Theoretical Chemistry Accounts

, 136:127 | Cite as

Solubility of functionalized single-wall carbon nanotubes in water: a theoretical study

  • Erik Díaz-Cervantes
  • Marco A. García-Revilla
  • Juvencio Robles
  • Faustino Aguilera-Granja
Regular Article


In this work, we perform an in silico functionalization of single-wall carbon nanotubes to model the apparent solubility, binding energies and to understand the dependence of such properties on the functionalization and the electronic properties. The present study is performed using two finite models of single-wall carbon nanotubes (SWCNTs), the first one is a SWCNT with metallic character and the second one is a SWCNT with semiconductor character. In addition, we use several functionalizing molecules reported in the literature: formic acid, triethylene glycol diamine, glucosamine, polyaminobenzene sulfonic acid, and polystyrene. We found that the molecule that confers a better apparent solubility to both models of SWCNTs, metallic and semiconductor, is glucosamine, due to the several hydroxyl groups in its structure, promoting a higher polarization of the system. At the same time, we found that metallic molecules promote higher polarization compared with the nonmetallic as it is observed in the electrostatic potential surfaces. Therefore, a single-wall carbon nanotube functionalized with glucosamine is suitable to show good solubility properties that can be related to a decrease in the toxicity and an increment in the biocompatibility properties.


SWCNT Solubility DFT Glucosamine TGD Nanotube 



E. Díaz-Cervantes acknowledges support from PRODEP and the Universitat de Girona computing resources. We are grateful to the Laboratorio Nacional de Caracterización de Propiedades Fisicoquímicas y Estructura Molecular (UG-UAA-CONACYT, Project: 123732) for the computing time provided. JR gratefully acknowledges financial support from the “Convocatoria Institucional de Apoyo a la Investigación Científica 2016–2017” from the Universidad de Guanajuato, Project No. 736/2016.


  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  2. 2.
    Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRefGoogle Scholar
  3. 3.
    Dresselhaus M, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett 86:1118–1121CrossRefGoogle Scholar
  5. 5.
    Sorescu DC (2001) Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube. J Phys Chem B 105:11227CrossRefGoogle Scholar
  6. 6.
    Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG (2004) Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 92:077402CrossRefGoogle Scholar
  7. 7.
    Chen J, Hamon M, Hu H, Chen Y, Rao A, Eklund P, Haddon R (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRefGoogle Scholar
  8. 8.
    Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun (Camb) 7(5):571–577CrossRefGoogle Scholar
  9. 9.
    Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and Condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127(12):4388–4396CrossRefGoogle Scholar
  10. 10.
    Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 1758(3):404–412CrossRefGoogle Scholar
  11. 11.
    Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68CrossRefGoogle Scholar
  12. 12.
    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed Engl 41:1853–1859CrossRefGoogle Scholar
  13. 13.
    Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand J-P, Muller S, Prato M, Bianco A (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633CrossRefGoogle Scholar
  14. 14.
    Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660CrossRefGoogle Scholar
  15. 15.
    Chen J, Chen S, Zhao X, Kuxnetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785CrossRefGoogle Scholar
  16. 16.
    Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, Leapman RD, Gutkind JS, Rusling JF (2010) Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine 5:1535–1546CrossRefGoogle Scholar
  17. 17.
    Kostarelos K, Lacerda L, Pastorin G, Wu W, Wiechowki S, Luangsivilav J, Godefroy S, Pantarotto D, Briand J-P, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113CrossRefGoogle Scholar
  18. 18.
    Robles J, López MJ, Alonso JA (2011) Modeling of the functionalization of single-wall carbon nanotubes towards its solubilization in an aqueous medium. Eur Phys J D 61:381–388CrossRefGoogle Scholar
  19. 19.
    Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett 2:369–373CrossRefGoogle Scholar
  20. 20.
    Popeney CS, Setaro A, Mutihac RC, Bluemmel P, Trappmann B, Vonneman J, Reich S, Haag R (2012) Polyglycerol-derived amphiphiles for the solubilization of single-walled carbon nanotubes in water: a structure-property study. Chem Phys Chem 13:203–211CrossRefGoogle Scholar
  21. 21.
    Zhao B, Hu H, Yu A, Perea D, Haddon RC (2005) Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. J Am Chem Soc 127:8197–8203CrossRefGoogle Scholar
  22. 22.
    O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRefGoogle Scholar
  23. 23.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hayge RH, Weisman RB, Smalley RR (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596CrossRefGoogle Scholar
  24. 24.
    Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int 43:5242–5246CrossRefGoogle Scholar
  25. 25.
    Cai D, Mataraza JM, Qin Z-H, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2:449–454CrossRefGoogle Scholar
  26. 26.
    Kam NWS, Jessop TC, Wender P, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851CrossRefGoogle Scholar
  27. 27.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules, 1st edn. Oxford science publications, OxfordGoogle Scholar
  28. 28.
    Tv Mourik, Bühl M, Gaigeot M-P (2011) Density functional theory across chemistry, physics and biology. Trans A Math Phys Eng Sci 373:20120488Google Scholar
  29. 29.
    Kryachko ES, Ludeña EV (2014) Density functional theory: foundations reviewed. Phys Rep 544:123–239CrossRefGoogle Scholar
  30. 30.
    Fatterbert J-L, Gygi F (2002) Density functional theory for efficient ab initio molecular dynamics simulations in solution. J Comput Chem 23:662–666CrossRefGoogle Scholar
  31. 31.
    Schwabe T, Grimme S (2008) Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Acc Chem Res 41:569–579CrossRefGoogle Scholar
  32. 32.
    Li R, Tang Y-J, Zhang H (2012) Density functional theory study of MoO3 molecule encapsulated inside single-walled carbon nanotubes. Chin J Struct Chem 31(11):1634–1640Google Scholar
  33. 33.
    Melchor S, Dobado JA (2004) CoNTub: an algorithm for connecting two arbitrary carbon nanotubes. J Chem Inf Comput Sci 44:1639–1646CrossRefGoogle Scholar
  34. 34.
    Levitt M (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59–107CrossRefGoogle Scholar
  35. 35.
    Mukherjee S, Warshel A (2012) Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the F0-ATPase. PNAS 109:14876–14881CrossRefGoogle Scholar
  36. 36.
    Messer BM, Roca M, Chu ZT, Vicatos S, Kilshtain AV, Warshel A (2010) Multiscale simulations of protein landscapes: using coarse-grained models as reference potentials to full explicit models. Proteins 78:1212–1227CrossRefGoogle Scholar
  37. 37.
    Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11:700–733CrossRefGoogle Scholar
  38. 38.
    Maseras F, Morokuma K (1995) IMOMM: a new integrated ab initio molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J Comput Chem 16:1170–1179CrossRefGoogle Scholar
  39. 39.
    Singh UC, Kollman P (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl+ Cl exchange reaction and gas phase protonation of polyethers. J Comput Chem 7:718–730CrossRefGoogle Scholar
  40. 40.
    Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int 48:1198–1229CrossRefGoogle Scholar
  41. 41.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr JAM, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. C.01 edn. Wallingford CTGoogle Scholar
  42. 42.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  43. 43.
    Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Mod 13:1173–1213CrossRefGoogle Scholar
  44. 44.
    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(33):2999–3093CrossRefGoogle Scholar
  45. 45.
    Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:1486–1493CrossRefGoogle Scholar
  46. 46.
    Kossiakoff AA, Spencer SA (1980) Nature 288:414–416CrossRefGoogle Scholar
  47. 47.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  48. 48.
    Robles J, López MJ, Alonso JA (2010) Eur Phys J D 61:381–388CrossRefGoogle Scholar
  49. 49.
    Zhou Z, Steigerwald M, Hybertsen M, Brus L, Friesner RA (2004) J Am Chem Soc 126:3597–3607CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  2. 2.Departamento de QuímicaUniversidad de GuanajuatoGuanajuatoMéxico
  3. 3.Departamento de FarmaciaUniversidad de GuanajuatoGuanajuatoMéxico

Personalised recommendations