Theoretical Chemistry Accounts

, 136:130 | Cite as

Development of hydrophilicity on the proton exchange using sulfonic acid on PEEK in the presence of water: a density functional theory study

Regular Article
  • 69 Downloads

Abstract

The introduction of a protogenic group such as sulfonic acid enables the operation of polymer electrolyte membrane for fuel cells at intermediate temperatures (> 100 °C) and very low humidity. It has been reported that the addition of a strongly acidic sulfonic acid group to hydrophobic polyether ether ketone (PEEK) creates the water permeability and proton transfer. In order to understand how sulfonic acid develops hydrophilicity, we conducted density functional theory calculations to determine the adsorption affinity of water for sulfonated PEEK (SPEEK), which represents the binding energy and band gap between HOMO (highest occupied molecular orbital) of SPEEK and LUMO (lowest unoccupied molecular orbital) of water molecules. Moreover, we designed disulfonated PEEKs (DSPEEK) with cis- and trans-conformations and found that cis-DSPEEK exhibits higher adsorption affinity for water with strong hydrogen bonds. This is attributed to the narrow energy gap of water molecules on cis-DSPEEK. Furthermore, we investigated proton adsorption in the presence of water to determine the effect of hydrophilic environment on the proton exchange in SPEEK. We found that cis-DSPEEK shows high repulsion for hydrogen transfer and moderate adsorption affinity for protons. Theoretical findings confirm that sulfonation ultimately yields hydrophilicity and developed proton transfer ability for PEEK, leading to a suitable structure for preferable proton exchange membrane.

Keywords

PEEK Adsorption Hydrophilicity Proton transfer Density functional theory 

Notes

Acknowledgements

This subject is supported by Korea Ministry of Environment (MOE) as “Public Technology Program based on Environmental Policy” (Grant Number: 2016000200003).

Author contributions

The manuscript was written through the contributions of all authors. All the authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declares that they have no conflict of interest.

References

  1. 1.
    Steele BCH (2001) Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J Mater Sci 36:1053–1068CrossRefGoogle Scholar
  2. 2.
    Ham D, Lee J (2009) Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4):873CrossRefGoogle Scholar
  3. 3.
    Xiao Y, Fu Z, Zhan G (2015) Increasing Pt methanol oxidation reaction activity and durability with a titanium molybdenum nitride catalyst support. J Power Sour 273:33–40CrossRefGoogle Scholar
  4. 4.
    Ganesan R, Ham DJ, Lee JS (2007) Platinized mesoporous tungsten carbide for electrochemical methanol oxidation. Electrochem Commun 9(10):2576–2579CrossRefGoogle Scholar
  5. 5.
    Ham DJ, Han S, Pak C, Ji SM, Jin S-A, Chang H, Lee JS (2012) High electrochemical performance and stability of co-deposited Pd–Au on phase-pure tungsten carbide for hydrogen oxidation. Top Catal 55(14):922–930CrossRefGoogle Scholar
  6. 6.
    Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—A review. J Power Sour 208:96–119CrossRefGoogle Scholar
  7. 7.
    He C, Mighri F, Guiver MD, Kaliaguine S (2016) Tuning surface hydrophilicity/hydrophobicity of hydrocarbon proton exchange membranes (PEMs). J Colloid Interface Sci 466:168–177CrossRefGoogle Scholar
  8. 8.
    Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells. J Power Sour 183(1):34–42CrossRefGoogle Scholar
  9. 9.
    Wilson MS, Decaro D, Neutzler JK, Zawodzinski C, Gottesfeld S (1996) Air-breathing fuel cell stacks for portable power applications. In: 1996 fuel cell seminar, Orlando, FL, 17–20 November, pp 314–317Google Scholar
  10. 10.
    Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, S. Gottesfeld J (1993) Water uptake by and transport through Nafion® 117 membranes. J Electrochem Soc 140:1041–1047CrossRefGoogle Scholar
  11. 11.
    Devrim Y, Albostan A (2015) Enhancement of PEM fuel cell performance at higher temperatures and lower humidities by high performance membrane electrode assembly based on Nafion/zeolite membrane. Int J Hydrogen Energy 40(44):15328–15335CrossRefGoogle Scholar
  12. 12.
    Prapainainar P, Theampetch A, Kongkachuichay P, Laosiripojana N, Holmes SM, Prapainainar C (2015) Effect of solution casting temperature on properties of nafion composite membrane with surface modified mordenite for direct methanol fuel cell. Surf Coat Technol 271:63–73CrossRefGoogle Scholar
  13. 13.
    Zheng J, He Q, Liu C, Yuan T, Zhang S, Yang H (2015) Nafion-microporous organic polymer networks composite membranes. J Membr Sci 476:571–579CrossRefGoogle Scholar
  14. 14.
    Wang J-T, Wainright JS, Savinell RF, Litt M (1996) A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte. J Appl Electrochem 26(7):751–756CrossRefGoogle Scholar
  15. 15.
    Bauer B, Jones DJ, Roziere J, Tchicaya L, Alberti G, Casciola M, Massinelli L, Peraio A, Besse S, E. Ramunni J (2000) Electrochemical characterisation of sulfonated polyetherketone membranes. J N Mater Electrochem Syst 3:93–98Google Scholar
  16. 16.
    Rikukawa M, Sanui K (2000) Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 25(10):1463–1502CrossRefGoogle Scholar
  17. 17.
    Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S (2000) Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J Membr Sci 173(1):17–34CrossRefGoogle Scholar
  18. 18.
    Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M (2001) Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 42(2):359–373CrossRefGoogle Scholar
  19. 19.
    Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39CrossRefGoogle Scholar
  20. 20.
    Lufrano F, Gatto I, Staiti P, Antonucci V, Passalacqua E (2001) Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ionics 145(1–4):47–51CrossRefGoogle Scholar
  21. 21.
    Manea C, Mulder M (2002) Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications. J Membr Sci 206(1–2):443–453CrossRefGoogle Scholar
  22. 22.
    Schechter A, Savinell RF (2002) Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ionics 147(1–2):181–187CrossRefGoogle Scholar
  23. 23.
    Devaux J, Delimoy D, Daoust D, Legras R, Mercier JP, Strazielle C, Nield E (1985) On the molecular weight determination of a poly(aryl-ether-ether-ketone) (PEEK). Polymer 26(13):1994–2000CrossRefGoogle Scholar
  24. 24.
    Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S (2004) Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J Membr Sci 229(1–2):95–106CrossRefGoogle Scholar
  25. 25.
    Grosmaire L, Castagnoni S, Huguet P, Sistat P, Boucher M, Bouchard P, Bebin P, Deabate S (2008) Probing proton dissociation in ionic polymers by means of in situATR-FTIR spectroscopy. Phys Chem Chem Phys 10(11):1577–1583CrossRefGoogle Scholar
  26. 26.
    Di Noto V, Piga M, Giffin GA, Pace G (2012) Broadband electric spectroscopy of proton conducting SPEEK membranes. J Membr Sci 390–391:58–67CrossRefGoogle Scholar
  27. 27.
    Knauth P, Pasquini L, Maranesi B, Pelzer K, Polini R, Di Vona ML (2013) Proton mobility in Sulfonated PolyEtherEtherKetone (SPEEK): influence of thermal crosslinking and annealing. Fuel Cells 13(1):79–85CrossRefGoogle Scholar
  28. 28.
    Di Vona ML, Alberti G, Sgreccia E, Casciola M, Knauth P (2012) High performance sulfonated aromatic ionomers by solvothermal macromolecular synthesis. Int J Hydrogen Energy 37(10):8672–8680CrossRefGoogle Scholar
  29. 29.
    Hongying H, Di Maria Luisa V, Philippe K (2011) Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells. Chemsuschem 4:1526–1536CrossRefGoogle Scholar
  30. 30.
    Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1–2):10–26CrossRefGoogle Scholar
  31. 31.
    Handayani S, Dewi EL, Hardy J, Christiani L, Kurniawan (2012) Influence of composite electrolyte membrane for proton exchange membrane fuel cells. Procedia Chem 4:123–130CrossRefGoogle Scholar
  32. 32.
    Hou H, Di Vona ML, Knauth P (2011) Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells. Chemsuschem 4(11):1526–1536CrossRefGoogle Scholar
  33. 33.
    Stanton JF (2001) A chemist’s guide to density functional theory By Wolfram Koch (German Chemical Society, Frankfurt am Main) and Max C. Holthausen (Humbolt University Berlin). Wiley-VCH:  Weinheim. 2000. xiv + 294 pp. $79.95. ISBN 3-527-29918-1. J Am Chem Soc 123 (11):2701–2701Google Scholar
  34. 34.
    Dmol3 module of Materials studio (2017) Module of materials studio. Biovia Inc, San DiegoGoogle Scholar
  35. 35.
    Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113(18):7756–7764CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Local and gradient-corrected density functionals. Chem Appl Density Funct Theory 629:453–462CrossRefGoogle Scholar
  37. 37.
    Kwon S, Hwang J, Lee H, Lee WR (2010) Interactive CO2 adsorption on the BaO (100) surface: a density functional theory (DFT) study. Bull Korean Chem Soc 31(8):2219–2222CrossRefGoogle Scholar
  38. 38.
    Koh W, Choi JI, Donaher K, Lee SG, Jang SS (2011) Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: first-principles study. ACS Appl Mater Interface 3(4):1186–1194CrossRefGoogle Scholar
  39. 39.
    Kwon SC, Fan M, Dacosta HFM, Russell AG, Tsouris C (2011) Reaction kinetics of CO2 carbonation with Mg-Rich minerals. J Phys Chem A 115(26):7638–7644CrossRefGoogle Scholar
  40. 40.
    Kwon SC, Fan MH, DaCosta HFM, Russell AG (2011) Factors affecting the direct mineralization of CO2 with olivine. J Environ Sci 23(8):1233–1239CrossRefGoogle Scholar
  41. 41.
    Y-y Zhao, Tsuchida E, Choe Y-K, Ikeshoji T, Barique MA, Ohira A (2014) Ab initio studies on the proton dissociation and infrared spectra of sulfonated poly(ether ether ketone) (SPEEK) membranes. Phys Chem Chem Phys 16(3):1041–1049CrossRefGoogle Scholar
  42. 42.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104CrossRefGoogle Scholar
  43. 43.
    Barzagli F, Mani F, Peruzzini M (2010) Continuous cycles of CO2 absorption and amine regeneration with aqueous alkanolamines: a comparison of the efficiency between pure and blended DEA, MDEA and AMP solutions by C-13 NMR spectroscopy. Energy Environ Sci 3(6):772–779CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringPusan National UniversityBusanRepublic of Korea
  2. 2.Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource SciencesChonbuk National UniversityIksanRepublic of Korea

Personalised recommendations