Skip to main content

Impact of substitution and self-aggregation on photoelectric and charge transfer characteristics in JD21 analogues

Abstract

In addition to π-linkages and acceptors, the nature of donor moiety plays a vital role in tuning organic dye performance. Here, to assess the substitution effect of peripheral groups in donor moiety, two electron-donating and two electron-withdrawing groups are, respectively, introduced in the ullazine ring of JD21. It is shown that the introduction of trifluoromethyl group in JD-dye (JD21-CF3) keeps the system to be of both the comparable light-harvesting and anti-aggregation ability to the original JD21 dye. It is regarded as a potentially efficient strategy to prepare JD-dyes or even other organic dyes. Additionally, the investigation on adsorbed dimeric dyes reveals that the electronic distribution with the highest occupied molecular orbital localizing on one dye molecule and the lowest unoccupied molecular orbital localizing on the TiO2 nanoparticle in the H-2-slip@TiO2 or F-2-slip@TiO2 configuration suggesting a weaker electronic coupling between two dyes. This type of adsorbed configuration with both dye dissociation is thus proposed to be dominant in an optimal solar cell based on the corresponding photoelectric characteristics. Our results clearly show a dependency of the dye performance on substituent groups.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ren Y, Li Y, Chen S, Liu J, Zhang J, Wang P (2016) Energy Environ Sci 9:1390–1399

    CAS  Article  Google Scholar 

  2. Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Correa-Baena JP, Tress WR, Abate A, Hagfeldt A (2016) Science 354:207–209

    Article  Google Scholar 

  3. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC (2016) Science 352(aad442):4

    Google Scholar 

  4. Peng J, Duong T, Zhou X, Shen H, Wu Y, Mulmudi H, Wan Y, Zhong D, Li J, Tsuzuki T, Weber K, Catchpole K, White T (2016) Adv Energy Mater. doi:10.1002/aenm.201601768

    Google Scholar 

  5. Nazeeruddin MK (2016) Nature 538:463–464

    Article  Google Scholar 

  6. Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X (2016) J Am Chem Soc 138:15829

    CAS  Article  Google Scholar 

  7. Du J, Du Z, Hu J-S, Pan Z, Shen Q, Sun J, Long D, Dong H, Sun L, Zhong X, Wan L-J (2016) J Am Chem Soc 138:4201–4209

    CAS  Article  Google Scholar 

  8. Li T-Y, Su C, Akula SB, Sun W-G, Chien H-M, Li W-R (2016) Org Lett 18:3386–3389

    CAS  Article  Google Scholar 

  9. Xie Y, Tang Y, Wu W, Wang Y, Liu J, Li X, Tian H, Zhu WH (2015) J Am Chem Soc 137:14055–14058

    CAS  Article  Google Scholar 

  10. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  11. Zaban A, Mićić OI, Gregg BA, Nozik AJ (1998) Langmuir 14:3153–3156

    CAS  Article  Google Scholar 

  12. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) J Am Chem Soc 131:6050–6051

    CAS  Article  Google Scholar 

  13. Zhang H, Wang H, Chen W, Jen AKY (2017) Adv Mater 29:1604984

    Article  Google Scholar 

  14. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Nat Chem 6:242–247

    CAS  Article  Google Scholar 

  15. Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P (2015) J Am Chem Soc 137:3799–3802

    CAS  Article  Google Scholar 

  16. Yang J, Ganesan P, Teuscher J, Moehl T, Kim YJ, Yi C, Comte P, Pei K, Holcombe TW, Nazeeruddin MK, Hua J, Zakeeruddin SM, Tian H, Grätzel M (2014) J Am Chem Soc 136:5722–5730

    CAS  Article  Google Scholar 

  17. Numata Y, Islam A, Chen H, Han L (2012) Energy Environ Sci 5:8548–8552

    CAS  Article  Google Scholar 

  18. Yang L-N, Li S-C, Li Z-S, Li Q-S (2015) RSC Adv 5:25079–25088

    CAS  Article  Google Scholar 

  19. Luo J, Xu M, Li R, Huang KW, Jiang C, Qi Q, Zeng W, Zhang J, Chi C, Wang P, Wu J (2014) J Am Chem Soc 136:265–272

    CAS  Article  Google Scholar 

  20. Luo J, Zhang J, Huang KW, Qi Q, Dong S, Zhang J, Wang P, Wu J (2016) J Mater Chem A 4:8428–8434

    CAS  Article  Google Scholar 

  21. Xu M, Li R, Pootrakulchote N, Dong S, Guo J, Yi Z, Zakeeruddin SM, Grätzel M, Wang P (2008) J Phys Chem C 112:19770–19776

    CAS  Article  Google Scholar 

  22. Xu M, Zhou D, Ning C, Liu J, Li R, Wang P (2011) Energy Environ Sci 4:4735–4742

    CAS  Article  Google Scholar 

  23. Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Chem Mater 22:1915–1925

    CAS  Article  Google Scholar 

  24. Zhang M, Wang Y, Xu M, Ma W, Li R, Wang P (2013) Energy Environ Sci 6:2944–2949

    CAS  Article  Google Scholar 

  25. Pastore M, De Angelis F (2010) ACS Nano 4:556–562

    CAS  Article  Google Scholar 

  26. Cheng J, Zhang F, Li K, Li J, Lu X, Zheng J, Guo K, Yang S, Dong Q (2017) Dyes Pigments 136:97–103

    CAS  Article  Google Scholar 

  27. Salvatori P, Marotta G, Cinti A, Anselmi C, Mosconi E, De Angelis F (2013) J Phys Chem C 117:3874–3887

    CAS  Article  Google Scholar 

  28. Agrawal S, Pastore M, Marotta G, Reddy MA, Chandrasekharam M, De Angelis F (2013) J Phys Chem C 117:9613–9622

    CAS  Article  Google Scholar 

  29. Pastore M, De Angelis F (2013) J Phys Chem Lett 4:956–974

    CAS  Article  Google Scholar 

  30. Feng S, Li Q-S, Yang L-N, Sun Z-Z, Niehaus TA, Li Z-S (2015) J Power Sources 273:282–289

    CAS  Article  Google Scholar 

  31. Zhang J, Yao Z, Cai Y, Yang L, Xu M, Li R, Zhang M, Dong X, Wang P (2013) Energy Environ Sci 6:1604–1614

    CAS  Article  Google Scholar 

  32. Zarate X, Claveria-Cadiz F, Arias-Olivares D, Rodriguez-Serrano A, Inostroza N, Schott E (2016) Phys Chem Chem Phys 18:24239–24251

    CAS  Article  Google Scholar 

  33. Delcamp JH, Yella A, Holcombe TW, Nazeeruddin MK, Grätzel M (2013) Angew Chem Int Ed 52:376–380

    CAS  Article  Google Scholar 

  34. Scrascia A, De Marco L, Laricchia S, Picca RA, Carlucci C, Fabiano E, Capodilupo AL, Della Sala F, Gigli G, Ciccarella G (2013) J Mater Chem A 1:11909–11921

    CAS  Article  Google Scholar 

  35. Lee M-W, Kim J-Y, Son HJ, Kim JY, Kim B, Kim H, Lee D-K, Kim K, Lee D-H, Ko MJ (2015) Sci Rep 5:7711

    Article  Google Scholar 

  36. Wu K-L, Ho S-T, Chou C-C, Chang Y-C, Pan H-A, Chi Y, Chou P-T (2012) Angew Chem Int Ed 51:5642–5646

    CAS  Article  Google Scholar 

  37. Chou C-C, Hu F-C, Yeh H-H, Wu H-P, Chi Y, Clifford JN, Palomares E, Liu S-H, Chou P-T, Lee G-H (2014) Angew Chem Int Ed 53:178–183

    CAS  Article  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  39. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    CAS  Article  Google Scholar 

  40. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    CAS  Article  Google Scholar 

  41. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    CAS  Article  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2014) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford, CT, USA

    Google Scholar 

  43. Rodriguez-Monge L, Larsson S (1996) J Phys Chem 100:6298–6303

    CAS  Article  Google Scholar 

  44. Nan G, Wang L, Yang X, Shuai Z, Zhao Y (2009) J Chem Phys 130:024704–024704–024704–024708

    Google Scholar 

  45. Troisi A, Orlandi G (2001) Chem Phys Lett 344:509–518

    CAS  Article  Google Scholar 

  46. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    CAS  Article  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    CAS  Article  Google Scholar 

  48. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    CAS  Article  Google Scholar 

  49. Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  50. Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845–856

    CAS  Article  Google Scholar 

  51. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  52. Yang L-N, Chen S-L, Li Z-S (2015) J Mater Chem A 3:8308–8315

    CAS  Article  Google Scholar 

  53. Yeh MY, Lin HC (2014) Phys Chem Chem Phys 16:24216

    CAS  Article  Google Scholar 

  54. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498–6506

    CAS  Article  Google Scholar 

  55. Sánchez-de-Armas R, Oviedo J, San MÁ (2011) Miguel and J. F. Sanz. J Phys Chem C 115:11293–11301

    Article  Google Scholar 

Download references

Acknowledgements

We own our sincere thanks to Prof. Ze-Sheng Li (Beijing Institute of Technology) and Prof. A-Lan Meng (Qingdao University of Science and Technology) for their guidance about this subject. We acknowledge National Supercomputing Center in Shenzhen for providing the computational resources and materials studio (version 6.1, module DMol3). This work is financially supported by the National Natural Science Foundation of China under Grant Nos. 51672144, 51572137, 51502149, 51272117, the Natural Science Foundation of Shandong Province under Grant No. ZR2016EMB25, the Higher Educational Science and Technology Program of Shandong Province under Grant No. J16LA10, the Application Foundation Research Program of Qingdao under Grant No. 15-9-1-28-jch, the Taishan Scholars Program of Shandong Province, and the Overseas Taishan Scholars Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Jiang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 816 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, LN., Li, ZJ. Impact of substitution and self-aggregation on photoelectric and charge transfer characteristics in JD21 analogues. Theor Chem Acc 136, 137 (2017). https://doi.org/10.1007/s00214-017-2150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2150-7

Keywords

  • Sensitizers
  • Absorption
  • Substitution
  • Self-aggregation
  • Electron transfer