Abstract
We construct a model for the one-electron reduced density matrix that is symmetric and which satisfies the diagonal of the idempotency constraint and then use this model to evaluate the kinetic energy. This strategy for designing density functionals directly addresses the N-representability problem for kinetic energy density functionals. Results for atoms and molecules are encouraging, especially considering the simplicity of the model. However, like all of the other kinetic energy functionals in the literature, quantitative accuracy is not achieved.
Similar content being viewed by others
Notes
Even if we had a more general, six-dimensional, model for the Fermi wave vector, forcing idempotency exactly would shift one back to Kohn–Sham-like computational cost and is therefore unacceptable in the context of orbital-free DFT.
References
Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138
Manby FR, Knowles PJ, Lloyd AW (2001) Density matrix functional theory in average and relative coordinates. Chem Phys Lett 335:409–419
Ayers PW, Liu SB (2007) Necessary and sufficient conditions for the N-representability of density functionals. Phys Rev A 75:022514
Kryachko ES, Ludena EV (1991) Formulation of N-representable and upsilon-representable density-functional theory. 1. Ground-states. Phys Rev A 43:2179–2193
Ludena EV (2004) Is the Hohenberg–Kohn–Sham version of DFT a semi-empirical theory? J Mol Struct Theochem 709:25–29
Ludena EV, Illas F, Ramirez-Solis A (2008) On the N-representability and universality of F[ρ] in the Hohenberg–Kohn–Sham version of density functional theory. Int J Mod Phys B 22:4398
Karasiev VV, Jones RS, Trickey SB, Harris FE (2009) Recent advances in developing orbital-free kinetic energy functionals. In: Paz JL, Hernandez AJ (eds) New developments in quantum chemistry. Transworld Res Netw, Trivandrum
Chai JD, Weeks JD (2007) Orbital-free density functional theory: kinetic potentials and ab initio local pseudopotentials. Phys Rev B 75:205122. doi:10.1103/PhysRevB.75.205122
Wesolowski TA (2004) Quantum chemistry ‘without orbitals’—an old idea and recent developments. Chimia 58(5):311–315
Wang YA, Carter EA, Schwartz SD (2000) Orbital-free kinetic-energy density functional theory. In: Theoretical methods in condensed phase chemistry. Kluwer, Dordrecht, pp 117–184
GarciaGonzalez P, Alvarellos JE, Chacon E (1996) Nonlocal kinetic-energy-density functionals. Phys Rev B 53:9509–9512. doi:10.1103/PhysRevB.53.9509
Levy M, Perdew JP, Sahni V (1984) Exact differential-equation for the density and ionization-energy of a many-particle system. Phys Rev A 30:2745–2748
March NH (1985) Differential-equation for the ground-state density in finite and extended inhomogeneous electron gases. Phys Lett A 113(2):66–68
March NH (1986) The local potential determining the square root of the ground- state electron-density of atoms and molecules from the Schrodinger-equation. Phys Lett A 113(9):476–478
March NH (1986) Differential-equation for the electron-density in large molecules. Int J Quantum Chem 13:3–8
Kozlowski PM, March NH (1989) Approximate density external potential relation and the pauli potential for systems with coulombic interaction. Int J Quantum Chem 36(6):741–748
Levy M, Ouyang H (1988) Exact properties of the pauli potential for the square root of the electron-density and the kinetic-energy functional. Phys Rev A 38(2):625–629
Ayers PW, Parr RG (2003) Sufficient conditions for monotonic electron density decay in many-electron systems. Int J Quantum Chem 95:877–881
Chen HJ, Zhou AH (2008) Orbital-free density functional theory for molecular structure calculations. Numer Math Theory Methods Appl 1:1–28
Garcia-Aldea D, Alvarellos JE (2005) A study of kinetic energy density functionals: a new proposal. In: Simos T, Maroulis G (eds) Advances in computational methods in sciences and engineering 2005, vol 4A–4B. Lecture series on computer and computational sciences., pp 1462–1466
Iyengar SS, Ernzerhof M, Maximoff SN, Scuseria GE (2001) Challenge of creating accurate and effective kinetic-energy functionals. Phys Rev A 63(5):052508
Chan GKL, Handy NC (2000) An extensive study of gradient approximations to the exchange-correlation and kinetic energy functionals. J Chem Phys 112(13):5639–5653
Thakkar AJ (1992) Comparison of kinetic-energy density functionals. Phys Rev A 46:6920–6924. doi:10.1103/PhysRevA.46.6920
Garcia-Aldea D, Alvarellos JE (2007) Kinetic energy density study of some representative semilocal kinetic energy functionals. J Chem Phys 127:144109. doi:10.1063/1.2774974
Finzel K (2015) A simple approximation for the pauli potential yielding self-consistent electron densities exhibiting proper atomic shell structure. Int J Quantum Chem 115(23):1629–1634. doi:10.1002/qua.24986
Finzel K (2016) Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure. J Chem Phys 144(3):034108. doi:10.1063/1.4940035
Finzel K (2016) Reinvestigation of the ideal atomic shell structure and its application in orbital-free density functional theory. Theor Chem Acc 135(4):87. doi:10.1007/s00214-016-1850-8
Finzel K (2016) Approximating the Pauli potential in bound coulomb systems. Int J Quantum Chem 116(16):1261–1266. doi:10.1002/qua.25169
Finzel K, Davidsson J, Abrikosov IA (2016) Energy-surfaces from the upper bound of the pauli kinetic energy. Int J Quantum Chem 116(18):1337–1341. doi:10.1002/qua.25181
Finzel K, Ayers PW (2016) Functional constructions with specified functional derivatives. Theor Chem Acc 135(12):225. doi:10.1007/s00214-016-2013-7
Finzel K (2017) About the compatibility between ansatzes and constraints for a local formulation of orbital-free density functional theory. Int J Quantum Chem. doi:10.1002/qua.25329
Finzel K, Ayers PW (2017) The exact Fermi potential yielding the Hartree–Fock electron density from orbital-free density functional theory. Int J Quantum Chem. doi:10.1002/qua.25364
Gunnarsson O, Jonson M, Lundqvist BI (1977) Exchange and correlation in inhomogeneous electron-systems. Solid State Commun 24(11):765–768
Alonso JA, Girifalco LA (1977) Nonlocal approximation to exchange energy of non-homogenous electron-gas. Solid State Commun 24:135–138
Alonso JA, Girifalco LA (1978) Nonlocal approximation to exchange potential and kinetic-energy of an inhomogeneous electron-gas. Phys Rev B 17(10):3735–3743
Bader RFW, Gillespie RJ, Macdougall PJ (1988) A physical basis for the VSEPR model of molecular geometry. J Am Chem Soc 110:7329–7336
Wang W-P, Parr RG (1977) Statistical atomic models with piecewise exponentially decaying electron densities. Phys Rev A 16(3):891–902
de Silva P, Korchowiec J, Wesolowski TA (2014) Atomic shell structure from the single-exponential decay detector. J Chem Phys 140:164301
de Silva P, Korchowiec J, Ram JSN, Wesolowski TA (2013) Extracting information about chemical bonding from molecular electron densities via single exponential decay detector (SEDD). Chimia 67:253–256
de Silva P, Korchowiec J, Wesolowski TA (2012) Revealing the bonding pattern from the molecular electron density using single exponential decay detector: an orbital-free alternative to the electron localization function. Chem Phys Chem 13:3462–3465
Ayers PW (2005) Electron localization functions and local measures of the covariance. J Chem Sci 117:441–454
Tsirelson V, Stash A (2002) Determination of the electron localization function from electron density. Chem Phys Lett 351:142–148
Levy M (1979) Universal variational functionals of electron-densities, 1st-order density-matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci 76:6062–6065
Levy M, Perdew JP (1985) The constrained search formulation of density functional theory. NATO ASI Series, Series B 123. Density Funct Methods Phys 11–30
Levy M (1996) Elementary concepts in density functional theory. Theor Comput Chem 4. Recent Developments and Applications of Modern Density Functional Theory 3–24
Gorling A, Levy M (1992) Requirements for correlation-energy density functionals from coordinate transformations. Phys Rev A 45:1509–1517
Gorling A, Levy M (1997) Hybrid schemes combining the Hartree–Fock method and density-functional theory: underlying formalism and properties of correlation functionals. J Chem Phys 106:2675–2680
Ayers PW, Cuevas-Saavedra R, Chakraborty D (2012) Phys Lett A 376:839–844. doi:10.1016/j.physleta.2012.01.028
GarciaGonzalez P, Alvarellos JE, Chacon E (1996) Kinetic-energy density functional: atoms and shell structure. Phys Rev A 54:1897–1905
Garcia-Gonzalez P, Alvarellos JE, Chacon E, Tarazona P (2000) Image potential and the exchange-correlation weighted density approximation functional. Phys Rev B 62:16063–16068. doi:10.1103/PhysRevB.62.16063
Garcia-Aldea D, Alvarellos JE (2007) Kinetic-energy density functionals with nonlocal terms with the structure of the Thomas–Fermi functional. Phys Rev A 76:052504. doi:10.1103/PhysRevA.76.052504
Garcia-Aldea D, Alvarellos JE (2008) Approach to kinetic energy density functionals: nonlocal terms with the structure of the von Weizsacker functional. Phys Rev A 77:022502. doi:10.1103/PhysRevA.77.022502
Garcia-Aldea D, Alvarellos JE (2008) Fully nonlocal kinetic energy density functionals: a proposal and general assessment for atomic systems. J Chem Phys 129:074103
Garcia-Gonzalez P, Alvarellos JE, Chacon E (1998) Kinetic-energy density functionals based on the homogeneous response function applied to one-dimensional fermion systems. Phys Rev A 57(6):4192–4200
Wang YA, Govind N, Carter EA (1999) Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys Rev B 60:16350–16358
Zhou BJ, Ligneres VL, Carter EA (2005) Improving the orbital-free density functional theory description of covalent materials. J Chem Phys 122:044103. doi:10.1063/1.1834563
Garcia-Gonzalez P, Alvarellos JE, Chacon E (1998) Nonlocal symmetrized kinetic-energy density functional: application to simple surfaces. Phys Rev B 57:4857–4862. doi:10.1103/PhysRevB.57.4857
Chacon E, Alvarellos JE, Tarazona P (1985) Nonlocal kinetic-energy functional for nonhomogeneous electron-systems. Phys Rev B 32:7868–7877
Wang LW, Teter MP (1992) Kinetic-energy functional of the electron-density. Phys Rev B 45:13196–13220. doi:10.1103/PhysRevB.45.13196
Smargiassi E, Madden PA (1994) Orbital-free kinetic-energy functionals for 1st-principles molecular-dynamics. Phys Rev B 49:5220–5226. doi:10.1103/PhysRevB.49.5220
Perrot F (1994) Hydrogen–hydrogen interaction in an electron-gas. J Phys: Condens Matter 6:431–446. doi:10.1088/0953-8984/6/2/014
Wang YA, Govind N, Carter EA (1998) Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys Rev B 58:13465–13471
Huang C, Carter EA (2010) Nonlocal orbital-free kinetic energy density functional for semiconductors. Phys Rev B 81:045206. doi:10.1103/PhysRevB.81.045206
Ovchinnikov IV, Bartell LA, Neuhauser D (2007) Hydrodynamic tensor density functional theory with correct susceptibility. J Chem Phys 126(13):134101
Herring C (1986) Explicit estimation of ground-state kinetic energies from electron-densities. Phys Rev A 34:2614–2631. doi:10.1103/PhysRevA.34.2614
Genova A, Pavanello M (2017) Nonlocal kinetic energy functionals by functional integration. arxiv: 1704.08943
Lindhard J (1954) K Dan Vidensk Selsk Mat-Fys Medd 28:8
Pick RM, Cohen MH, Martin RM (1970) Microscopic theory of force constants in the adiabatic approximation. Phys Rev B 1:910
Wang YA (1997) Natural variables for density functionals. Phys Rev A 55(6):4589–4592
Wu ZG, Cohen RE, Singh DJ (2004) Comparing the weighted density approximation with the LDA and GGA for ground-state properties of ferroelectric perovskites. Phys Rev B 70:104112. doi:10.1103/PhysRevB.70.104112
Katsumi Y (1967) Energy levels for an extended Thomas–Fermi–Dirac potential. J Phys Soc Jpn 22:1127–1132
Murphy DR, Wang WP (1980) Comparative-study of the gradient expansion of the atomic kinetic-energy functional-neutral atoms. J Chem Phys 72(1):429–433
Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079
Cuevas-Saavedra R, Chakraborty D, Rabi S, Cardenas C, Ayers PW (2012) Symmetric non local weighted density approximations from the exchange-correlation hole of the uniform electron gas. J Chem Theory Comput 8(11):4081–4093. doi:10.1021/ct300325t
Cuevas-Saavedra R, Chakraborty D, Ayers PW (2012) Symmetric two-point weighted density approximation for exchange energies. Phys Rev A 85(4):042519. doi:10.1103/PhysRevA.85.042519
Cuevas-Saavedra R, Thompson DC, Ayers PW (2016) Alternative Ornstein–Zernike models from the homogeneous electron liquid for density functional theory calculations. Int J Quantum Chem 116(11):852–861. doi:10.1002/qua.25081
Cuevas-Saavedra R, Ayers PW (2012) Using the spin-resolved electronic direct correlation function to estimate the correlation energy of the spin-polarized uniform electron gas. J Phys Chem Solids 73:670–673. doi:10.1016/j.jpcs.2012.01.004
Cuevas-Saavedra R, Ayers PW (2012) Addressing the Coulomb potential singularity in exchange-correlation energy integrals with one-electron and two-electron basis sets. Chem Phys Lett 539:163–167. doi:10.1016/j.cplett.2012.04.037
Antaya H, Zhou YX, Ernzerhof M (2014) Approximating the exchange energy through the nonempirical exchange-factor approach. Phys Rev A 90(3):032513. doi:10.1103/PhysRevA.90.032513
Patrick CE, Thygesen KS (2015) Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids-the renormalized ALDA and electron gas kernels. J Chem Phys 143(10):102802. doi:10.1063/1.4919236
Zhou YX, Bahmann H, Ernzerhof M (2015) Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit. J Chem Phys 143(12):124103. doi:10.1063/1.4931160
Precechtelova JP, Bahmann H, Kaupp M, Ernzerhof M (2015) Design of exchange-correlation functionals through the correlation factor approach. J Chem Phys 143(14):144102. doi:10.1063/1.4932074
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Iszmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc., Wallingford
Thomas LH (1927) The calculation of atomic fields. Proc Camb Philos Soc 23:542–548
Fermi E (1928) A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements. Z Phys 48:73–79
Von Weizsacker CF (1935) Zur theorie dier kernmassen. ZPhysik 96:431–458
Kirzhnits DA (1957) Quantum corrections to the Thomas–Fermi equation. Sov Phys JETP 5:64–71
Berk A (1983) Lower-bound energy functionals and their application to diatomic systems. Phys Rev A 28:1908–1923. doi:10.1103/PhysRevA.28.1908
Becke AD (1988) A multicenter numerical-integration scheme for polyatomic molecules. J Chem Phys 88:2547–2553
Lebedev VI (1975) Spherical quadrature formulas exact to orders 25–29. Sibirskii Matematicheskii Zhurnal 18:99–107
Lebedev VI (1992) Quadrature formulas of orders 41, 47, and 53 for the sphere. Russ Acad Sci Dokl Math 45:587–592
Lebedev VI (1992) A quadrature formula for the sphere of 59th algebraic order of accuracy. Russ Acad Sci Dokl Math 50:283–286
Lebedev VI, Laikov DN (1999) Quadrature formula for the sphere of 131-th algebraic order of accuracy. Dokl Akad Nauk 366:741–745
Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401
Perdew JP, Ruzsinszky A, Tao JM, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123:062201
Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. PCCP 13:6670–6688. doi:10.1039/c0cp02984j
Kohn W (1996) Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett 76:3168–3171
He LX, Vanderbilt D (2001) Exponential decay properties of Wannier functions and related quantities. Phys Rev Lett 86:5341–5344
Acknowledgements
Support from Sharcnet, NSERC, and the Canada Research Chairs is appreciated. RCS acknowledges financial support from CONACYT, ITESM and DGRI-SEP.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chakraborty, D., Cuevas-Saavedra, R. & Ayers, P.W. Two-point weighted density approximations for the kinetic energy density functional. Theor Chem Acc 136, 113 (2017). https://doi.org/10.1007/s00214-017-2149-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-017-2149-0