Skip to main content

Advertisement

Log in

Two-point weighted density approximations for the kinetic energy density functional

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We construct a model for the one-electron reduced density matrix that is symmetric and which satisfies the diagonal of the idempotency constraint and then use this model to evaluate the kinetic energy. This strategy for designing density functionals directly addresses the N-representability problem for kinetic energy density functionals. Results for atoms and molecules are encouraging, especially considering the simplicity of the model. However, like all of the other kinetic energy functionals in the literature, quantitative accuracy is not achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Even if we had a more general, six-dimensional, model for the Fermi wave vector, forcing idempotency exactly would shift one back to Kohn–Sham-like computational cost and is therefore unacceptable in the context of orbital-free DFT.

References

  1. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  2. Manby FR, Knowles PJ, Lloyd AW (2001) Density matrix functional theory in average and relative coordinates. Chem Phys Lett 335:409–419

    Article  CAS  Google Scholar 

  3. Ayers PW, Liu SB (2007) Necessary and sufficient conditions for the N-representability of density functionals. Phys Rev A 75:022514

    Article  Google Scholar 

  4. Kryachko ES, Ludena EV (1991) Formulation of N-representable and upsilon-representable density-functional theory. 1. Ground-states. Phys Rev A 43:2179–2193

    Article  CAS  Google Scholar 

  5. Ludena EV (2004) Is the Hohenberg–Kohn–Sham version of DFT a semi-empirical theory? J Mol Struct Theochem 709:25–29

    Article  CAS  Google Scholar 

  6. Ludena EV, Illas F, Ramirez-Solis A (2008) On the N-representability and universality of F[ρ] in the Hohenberg–Kohn–Sham version of density functional theory. Int J Mod Phys B 22:4398

    Article  Google Scholar 

  7. Karasiev VV, Jones RS, Trickey SB, Harris FE (2009) Recent advances in developing orbital-free kinetic energy functionals. In: Paz JL, Hernandez AJ (eds) New developments in quantum chemistry. Transworld Res Netw, Trivandrum

    Google Scholar 

  8. Chai JD, Weeks JD (2007) Orbital-free density functional theory: kinetic potentials and ab initio local pseudopotentials. Phys Rev B 75:205122. doi:10.1103/PhysRevB.75.205122

    Article  Google Scholar 

  9. Wesolowski TA (2004) Quantum chemistry ‘without orbitals’—an old idea and recent developments. Chimia 58(5):311–315

    Article  CAS  Google Scholar 

  10. Wang YA, Carter EA, Schwartz SD (2000) Orbital-free kinetic-energy density functional theory. In: Theoretical methods in condensed phase chemistry. Kluwer, Dordrecht, pp 117–184

  11. GarciaGonzalez P, Alvarellos JE, Chacon E (1996) Nonlocal kinetic-energy-density functionals. Phys Rev B 53:9509–9512. doi:10.1103/PhysRevB.53.9509

    Article  CAS  Google Scholar 

  12. Levy M, Perdew JP, Sahni V (1984) Exact differential-equation for the density and ionization-energy of a many-particle system. Phys Rev A 30:2745–2748

    Article  Google Scholar 

  13. March NH (1985) Differential-equation for the ground-state density in finite and extended inhomogeneous electron gases. Phys Lett A 113(2):66–68

    Article  Google Scholar 

  14. March NH (1986) The local potential determining the square root of the ground- state electron-density of atoms and molecules from the Schrodinger-equation. Phys Lett A 113(9):476–478

    Article  Google Scholar 

  15. March NH (1986) Differential-equation for the electron-density in large molecules. Int J Quantum Chem 13:3–8

    CAS  Google Scholar 

  16. Kozlowski PM, March NH (1989) Approximate density external potential relation and the pauli potential for systems with coulombic interaction. Int J Quantum Chem 36(6):741–748

    Article  CAS  Google Scholar 

  17. Levy M, Ouyang H (1988) Exact properties of the pauli potential for the square root of the electron-density and the kinetic-energy functional. Phys Rev A 38(2):625–629

    Article  CAS  Google Scholar 

  18. Ayers PW, Parr RG (2003) Sufficient conditions for monotonic electron density decay in many-electron systems. Int J Quantum Chem 95:877–881

    Article  CAS  Google Scholar 

  19. Chen HJ, Zhou AH (2008) Orbital-free density functional theory for molecular structure calculations. Numer Math Theory Methods Appl 1:1–28

    Google Scholar 

  20. Garcia-Aldea D, Alvarellos JE (2005) A study of kinetic energy density functionals: a new proposal. In: Simos T, Maroulis G (eds) Advances in computational methods in sciences and engineering 2005, vol 4A–4B. Lecture series on computer and computational sciences., pp 1462–1466

    Google Scholar 

  21. Iyengar SS, Ernzerhof M, Maximoff SN, Scuseria GE (2001) Challenge of creating accurate and effective kinetic-energy functionals. Phys Rev A 63(5):052508

    Article  Google Scholar 

  22. Chan GKL, Handy NC (2000) An extensive study of gradient approximations to the exchange-correlation and kinetic energy functionals. J Chem Phys 112(13):5639–5653

    Article  CAS  Google Scholar 

  23. Thakkar AJ (1992) Comparison of kinetic-energy density functionals. Phys Rev A 46:6920–6924. doi:10.1103/PhysRevA.46.6920

    Article  CAS  Google Scholar 

  24. Garcia-Aldea D, Alvarellos JE (2007) Kinetic energy density study of some representative semilocal kinetic energy functionals. J Chem Phys 127:144109. doi:10.1063/1.2774974

    Article  Google Scholar 

  25. Finzel K (2015) A simple approximation for the pauli potential yielding self-consistent electron densities exhibiting proper atomic shell structure. Int J Quantum Chem 115(23):1629–1634. doi:10.1002/qua.24986

    Article  CAS  Google Scholar 

  26. Finzel K (2016) Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure. J Chem Phys 144(3):034108. doi:10.1063/1.4940035

    Article  Google Scholar 

  27. Finzel K (2016) Reinvestigation of the ideal atomic shell structure and its application in orbital-free density functional theory. Theor Chem Acc 135(4):87. doi:10.1007/s00214-016-1850-8

    Article  Google Scholar 

  28. Finzel K (2016) Approximating the Pauli potential in bound coulomb systems. Int J Quantum Chem 116(16):1261–1266. doi:10.1002/qua.25169

    Article  CAS  Google Scholar 

  29. Finzel K, Davidsson J, Abrikosov IA (2016) Energy-surfaces from the upper bound of the pauli kinetic energy. Int J Quantum Chem 116(18):1337–1341. doi:10.1002/qua.25181

    Article  CAS  Google Scholar 

  30. Finzel K, Ayers PW (2016) Functional constructions with specified functional derivatives. Theor Chem Acc 135(12):225. doi:10.1007/s00214-016-2013-7

    Article  Google Scholar 

  31. Finzel K (2017) About the compatibility between ansatzes and constraints for a local formulation of orbital-free density functional theory. Int J Quantum Chem. doi:10.1002/qua.25329

    Google Scholar 

  32. Finzel K, Ayers PW (2017) The exact Fermi potential yielding the Hartree–Fock electron density from orbital-free density functional theory. Int J Quantum Chem. doi:10.1002/qua.25364

    Google Scholar 

  33. Gunnarsson O, Jonson M, Lundqvist BI (1977) Exchange and correlation in inhomogeneous electron-systems. Solid State Commun 24(11):765–768

    Article  CAS  Google Scholar 

  34. Alonso JA, Girifalco LA (1977) Nonlocal approximation to exchange energy of non-homogenous electron-gas. Solid State Commun 24:135–138

    Article  CAS  Google Scholar 

  35. Alonso JA, Girifalco LA (1978) Nonlocal approximation to exchange potential and kinetic-energy of an inhomogeneous electron-gas. Phys Rev B 17(10):3735–3743

    Article  CAS  Google Scholar 

  36. Bader RFW, Gillespie RJ, Macdougall PJ (1988) A physical basis for the VSEPR model of molecular geometry. J Am Chem Soc 110:7329–7336

    Article  CAS  Google Scholar 

  37. Wang W-P, Parr RG (1977) Statistical atomic models with piecewise exponentially decaying electron densities. Phys Rev A 16(3):891–902

    Article  CAS  Google Scholar 

  38. de Silva P, Korchowiec J, Wesolowski TA (2014) Atomic shell structure from the single-exponential decay detector. J Chem Phys 140:164301

    Article  Google Scholar 

  39. de Silva P, Korchowiec J, Ram JSN, Wesolowski TA (2013) Extracting information about chemical bonding from molecular electron densities via single exponential decay detector (SEDD). Chimia 67:253–256

    Article  Google Scholar 

  40. de Silva P, Korchowiec J, Wesolowski TA (2012) Revealing the bonding pattern from the molecular electron density using single exponential decay detector: an orbital-free alternative to the electron localization function. Chem Phys Chem 13:3462–3465

    Article  Google Scholar 

  41. Ayers PW (2005) Electron localization functions and local measures of the covariance. J Chem Sci 117:441–454

    Article  CAS  Google Scholar 

  42. Tsirelson V, Stash A (2002) Determination of the electron localization function from electron density. Chem Phys Lett 351:142–148

    Article  CAS  Google Scholar 

  43. Levy M (1979) Universal variational functionals of electron-densities, 1st-order density-matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci 76:6062–6065

    Article  CAS  Google Scholar 

  44. Levy M, Perdew JP (1985) The constrained search formulation of density functional theory. NATO ASI Series, Series B 123. Density Funct Methods Phys 11–30

  45. Levy M (1996) Elementary concepts in density functional theory. Theor Comput Chem 4. Recent Developments and Applications of Modern Density Functional Theory 3–24

  46. Gorling A, Levy M (1992) Requirements for correlation-energy density functionals from coordinate transformations. Phys Rev A 45:1509–1517

    Article  CAS  Google Scholar 

  47. Gorling A, Levy M (1997) Hybrid schemes combining the Hartree–Fock method and density-functional theory: underlying formalism and properties of correlation functionals. J Chem Phys 106:2675–2680

    Article  Google Scholar 

  48. Ayers PW, Cuevas-Saavedra R, Chakraborty D (2012) Phys Lett A 376:839–844. doi:10.1016/j.physleta.2012.01.028

    Article  CAS  Google Scholar 

  49. GarciaGonzalez P, Alvarellos JE, Chacon E (1996) Kinetic-energy density functional: atoms and shell structure. Phys Rev A 54:1897–1905

    Article  CAS  Google Scholar 

  50. Garcia-Gonzalez P, Alvarellos JE, Chacon E, Tarazona P (2000) Image potential and the exchange-correlation weighted density approximation functional. Phys Rev B 62:16063–16068. doi:10.1103/PhysRevB.62.16063

    Article  CAS  Google Scholar 

  51. Garcia-Aldea D, Alvarellos JE (2007) Kinetic-energy density functionals with nonlocal terms with the structure of the Thomas–Fermi functional. Phys Rev A 76:052504. doi:10.1103/PhysRevA.76.052504

    Article  Google Scholar 

  52. Garcia-Aldea D, Alvarellos JE (2008) Approach to kinetic energy density functionals: nonlocal terms with the structure of the von Weizsacker functional. Phys Rev A 77:022502. doi:10.1103/PhysRevA.77.022502

    Article  Google Scholar 

  53. Garcia-Aldea D, Alvarellos JE (2008) Fully nonlocal kinetic energy density functionals: a proposal and general assessment for atomic systems. J Chem Phys 129:074103

    Article  Google Scholar 

  54. Garcia-Gonzalez P, Alvarellos JE, Chacon E (1998) Kinetic-energy density functionals based on the homogeneous response function applied to one-dimensional fermion systems. Phys Rev A 57(6):4192–4200

    Article  CAS  Google Scholar 

  55. Wang YA, Govind N, Carter EA (1999) Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys Rev B 60:16350–16358

    Article  CAS  Google Scholar 

  56. Zhou BJ, Ligneres VL, Carter EA (2005) Improving the orbital-free density functional theory description of covalent materials. J Chem Phys 122:044103. doi:10.1063/1.1834563

    Article  Google Scholar 

  57. Garcia-Gonzalez P, Alvarellos JE, Chacon E (1998) Nonlocal symmetrized kinetic-energy density functional: application to simple surfaces. Phys Rev B 57:4857–4862. doi:10.1103/PhysRevB.57.4857

    Article  CAS  Google Scholar 

  58. Chacon E, Alvarellos JE, Tarazona P (1985) Nonlocal kinetic-energy functional for nonhomogeneous electron-systems. Phys Rev B 32:7868–7877

    Article  CAS  Google Scholar 

  59. Wang LW, Teter MP (1992) Kinetic-energy functional of the electron-density. Phys Rev B 45:13196–13220. doi:10.1103/PhysRevB.45.13196

    Article  CAS  Google Scholar 

  60. Smargiassi E, Madden PA (1994) Orbital-free kinetic-energy functionals for 1st-principles molecular-dynamics. Phys Rev B 49:5220–5226. doi:10.1103/PhysRevB.49.5220

    Article  CAS  Google Scholar 

  61. Perrot F (1994) Hydrogen–hydrogen interaction in an electron-gas. J Phys: Condens Matter 6:431–446. doi:10.1088/0953-8984/6/2/014

    CAS  Google Scholar 

  62. Wang YA, Govind N, Carter EA (1998) Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys Rev B 58:13465–13471

    Article  CAS  Google Scholar 

  63. Huang C, Carter EA (2010) Nonlocal orbital-free kinetic energy density functional for semiconductors. Phys Rev B 81:045206. doi:10.1103/PhysRevB.81.045206

    Article  Google Scholar 

  64. Ovchinnikov IV, Bartell LA, Neuhauser D (2007) Hydrodynamic tensor density functional theory with correct susceptibility. J Chem Phys 126(13):134101

    Article  Google Scholar 

  65. Herring C (1986) Explicit estimation of ground-state kinetic energies from electron-densities. Phys Rev A 34:2614–2631. doi:10.1103/PhysRevA.34.2614

    Article  CAS  Google Scholar 

  66. Genova A, Pavanello M (2017) Nonlocal kinetic energy functionals by functional integration. arxiv: 1704.08943

  67. Lindhard J (1954) K Dan Vidensk Selsk Mat-Fys Medd 28:8

    Google Scholar 

  68. Pick RM, Cohen MH, Martin RM (1970) Microscopic theory of force constants in the adiabatic approximation. Phys Rev B 1:910

    Article  Google Scholar 

  69. Wang YA (1997) Natural variables for density functionals. Phys Rev A 55(6):4589–4592

    Article  CAS  Google Scholar 

  70. Wu ZG, Cohen RE, Singh DJ (2004) Comparing the weighted density approximation with the LDA and GGA for ground-state properties of ferroelectric perovskites. Phys Rev B 70:104112. doi:10.1103/PhysRevB.70.104112

    Article  Google Scholar 

  71. Katsumi Y (1967) Energy levels for an extended Thomas–Fermi–Dirac potential. J Phys Soc Jpn 22:1127–1132

    Article  Google Scholar 

  72. Murphy DR, Wang WP (1980) Comparative-study of the gradient expansion of the atomic kinetic-energy functional-neutral atoms. J Chem Phys 72(1):429–433

    Article  CAS  Google Scholar 

  73. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  74. Cuevas-Saavedra R, Chakraborty D, Rabi S, Cardenas C, Ayers PW (2012) Symmetric non local weighted density approximations from the exchange-correlation hole of the uniform electron gas. J Chem Theory Comput 8(11):4081–4093. doi:10.1021/ct300325t

    Article  CAS  Google Scholar 

  75. Cuevas-Saavedra R, Chakraborty D, Ayers PW (2012) Symmetric two-point weighted density approximation for exchange energies. Phys Rev A 85(4):042519. doi:10.1103/PhysRevA.85.042519

    Article  Google Scholar 

  76. Cuevas-Saavedra R, Thompson DC, Ayers PW (2016) Alternative Ornstein–Zernike models from the homogeneous electron liquid for density functional theory calculations. Int J Quantum Chem 116(11):852–861. doi:10.1002/qua.25081

    Article  CAS  Google Scholar 

  77. Cuevas-Saavedra R, Ayers PW (2012) Using the spin-resolved electronic direct correlation function to estimate the correlation energy of the spin-polarized uniform electron gas. J Phys Chem Solids 73:670–673. doi:10.1016/j.jpcs.2012.01.004

    Article  CAS  Google Scholar 

  78. Cuevas-Saavedra R, Ayers PW (2012) Addressing the Coulomb potential singularity in exchange-correlation energy integrals with one-electron and two-electron basis sets. Chem Phys Lett 539:163–167. doi:10.1016/j.cplett.2012.04.037

    Article  Google Scholar 

  79. Antaya H, Zhou YX, Ernzerhof M (2014) Approximating the exchange energy through the nonempirical exchange-factor approach. Phys Rev A 90(3):032513. doi:10.1103/PhysRevA.90.032513

    Article  Google Scholar 

  80. Patrick CE, Thygesen KS (2015) Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids-the renormalized ALDA and electron gas kernels. J Chem Phys 143(10):102802. doi:10.1063/1.4919236

    Article  Google Scholar 

  81. Zhou YX, Bahmann H, Ernzerhof M (2015) Construction of exchange-correlation functionals through interpolation between the non-interacting and the strong-correlation limit. J Chem Phys 143(12):124103. doi:10.1063/1.4931160

    Article  Google Scholar 

  82. Precechtelova JP, Bahmann H, Kaupp M, Ernzerhof M (2015) Design of exchange-correlation functionals through the correlation factor approach. J Chem Phys 143(14):144102. doi:10.1063/1.4932074

    Article  Google Scholar 

  83. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Iszmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc., Wallingford

    Google Scholar 

  84. Thomas LH (1927) The calculation of atomic fields. Proc Camb Philos Soc 23:542–548

    Article  CAS  Google Scholar 

  85. Fermi E (1928) A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements. Z Phys 48:73–79

    Article  CAS  Google Scholar 

  86. Von Weizsacker CF (1935) Zur theorie dier kernmassen. ZPhysik 96:431–458

    Article  Google Scholar 

  87. Kirzhnits DA (1957) Quantum corrections to the Thomas–Fermi equation. Sov Phys JETP 5:64–71

    Google Scholar 

  88. Berk A (1983) Lower-bound energy functionals and their application to diatomic systems. Phys Rev A 28:1908–1923. doi:10.1103/PhysRevA.28.1908

    Article  CAS  Google Scholar 

  89. Becke AD (1988) A multicenter numerical-integration scheme for polyatomic molecules. J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

  90. Lebedev VI (1975) Spherical quadrature formulas exact to orders 25–29. Sibirskii Matematicheskii Zhurnal 18:99–107

    Google Scholar 

  91. Lebedev VI (1992) Quadrature formulas of orders 41, 47, and 53 for the sphere. Russ Acad Sci Dokl Math 45:587–592

    Google Scholar 

  92. Lebedev VI (1992) A quadrature formula for the sphere of 59th algebraic order of accuracy. Russ Acad Sci Dokl Math 50:283–286

    Google Scholar 

  93. Lebedev VI, Laikov DN (1999) Quadrature formula for the sphere of 131-th algebraic order of accuracy. Dokl Akad Nauk 366:741–745

    CAS  Google Scholar 

  94. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  Google Scholar 

  95. Perdew JP, Ruzsinszky A, Tao JM, Staroverov VN, Scuseria GE, Csonka GI (2005) Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J Chem Phys 123:062201

    Article  Google Scholar 

  96. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. PCCP 13:6670–6688. doi:10.1039/c0cp02984j

    Article  CAS  Google Scholar 

  97. Kohn W (1996) Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett 76:3168–3171

    Article  CAS  Google Scholar 

  98. He LX, Vanderbilt D (2001) Exponential decay properties of Wannier functions and related quantities. Phys Rev Lett 86:5341–5344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from Sharcnet, NSERC, and the Canada Research Chairs is appreciated. RCS acknowledges financial support from CONACYT, ITESM and DGRI-SEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Ayers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., Cuevas-Saavedra, R. & Ayers, P.W. Two-point weighted density approximations for the kinetic energy density functional. Theor Chem Acc 136, 113 (2017). https://doi.org/10.1007/s00214-017-2149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2149-0

Keywords

Navigation