Skip to main content
Log in

Calculation of pore diameters in zeolites

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Pore diameters of zeolites are calculated using a new freely available software tool which identifies rings based on the crystallographic notation of atoms. In addition, an automated algorithm allows to extract information from molecular dynamics outputs so that dynamic pore diameters are calculated and compared to an experimental reference. This is useful in order to identify different rings along a given channel as well as for the calculation and analysis of ring deformations due to framework dynamics and sorbate diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Planar rings usually correspond to regular polygons, whose internal angle is given by such equation.

References

  1. Román-Román EI, Zicovich-Wilson CM (2015) The role of long-range van der Waals forces in the relative stability of SiO2 zeolites. Chem Phys Lett 619:109–114

    Article  Google Scholar 

  2. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th revised edn. Elsevier (176 structures). The web version [www.iza-structure.org] contains currently 232 structures

  3. Sartbaeva A, Wells SA, Treacy MMJ, Thorpe MF (2006) The flexibility window in zeolites. Nature Mater 5:962–965

    Article  CAS  Google Scholar 

  4. Dawson CJ, Kapko V, Thorpe MF, Foster MD, Treacy MMJ (2012) Flexibility as an indicator of feasibility of zeolite frameworks. J Phys Chem C 116:16175–16181

    Article  CAS  Google Scholar 

  5. Dawson CJ, Pope MAB, O’Keeffe M, Treacy MMJ (2013) Low-density, low-energy, zeolites assembled from double-layer silica sheets. Chem Mater 25:3816–3821

    Article  CAS  Google Scholar 

  6. Gatta GD (2010) Extreme deformation mechanisms in open-framework silicates at high-pressure: evidence of anomalous inter-tetrahedral angles. Micropor Mesopor Mater 128:78–84

    Article  CAS  Google Scholar 

  7. Liu X, Valero S, Argente E, Botti V, Sastre G (2015) The importance of T…T…T angles in the feasibility of zeolites. Z Kristallogr 230:291–299

    CAS  Google Scholar 

  8. Brunner GO, Meier WM (1989) Framework density distribution of zeolite-type tetrahedral nets. Nature 337:146–147

    Article  CAS  Google Scholar 

  9. Brunner GO (1993) Which frameworks will form SiO2 analogs? the significance of loop configurations. Zeolites 13:592–593

    Article  CAS  Google Scholar 

  10. Zwijnenburg MA, Bell RG (2008) Absence of limitations on the framework density and pore size of high-silica zeolites. Chem Mater 20:3008–3014

    Article  CAS  Google Scholar 

  11. Zwijnenburg MA, Bromley ST, Jansen JC, Maschmeyer T (2004) Toward understanding extra-large-pore zeolite energetics and topology: a polyhedral approach. Chem Mater 16:12–20

    Article  CAS  Google Scholar 

  12. Sastre G, Gale JD (2001) ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes. Micropor Mesopor Mater 43:27–40

    Article  CAS  Google Scholar 

  13. Sastre G, Corma A (2009) Topological descriptor for oxygens in zeolites. analysis of ring counting in tetracoordinated nets. J Phys Chem B 113:6398–6405

    Article  CAS  Google Scholar 

  14. van Koningsveld H, van Bekkum H, Jansen JC (1987) On the location and disorder of the tetrapropyl-ammonium (TPA) ion in Zeolite ZSM-5 with improved framework accuracy. Acta Cryst B 43:127–132

    Article  Google Scholar 

  15. van Koningsveld H, Tuinstra F, van Bekkum H, Jansen JC (1989) The location of p-xylene in a single crystal of zeolite H-ZSM-5 with a new sorbate-induced orthorhombic framework symmetry. Acta Cryst B 45:423–431

    Article  Google Scholar 

  16. van Koningsveld H, Jansen JC, van Bekkum H (1990) The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites 10:235–242

    Article  Google Scholar 

  17. Smith W, Forester T (1996) DL POLY 2.0: a general-purpose parallel molecular dynamics simulation package. J Mol Graph 14:136

    Article  CAS  Google Scholar 

  18. Fincham D, Mitchell PJ (1993) Shell model simulations by adiabatic dynamics. J Phys Condens Matter 5:1031–1038

    Article  Google Scholar 

  19. van Beest BWH, Kramer GJ, van Santen RA (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64:1955–1958

    Article  Google Scholar 

  20. Nicholas JB, Hopfinger AJ, Trouw FR, Iton LE (1991) Molecular modeling of zeolite structure. Structure and dynamics of silica sodalite and silicate force field. J Am Chem Soc 113:4792–4800

    Article  CAS  Google Scholar 

  21. Sastre G (2014) Computational study of diffusion of propane in small pore acidic zeotypes AFX and AEI. Catal Today 226:25–36

    Article  CAS  Google Scholar 

  22. Ghysels A, Moors SLC, Hemelsoet K, De Wispelaere K, Waroquier M, Sastre G, Van Speybroeck V (2015) Shape-selective diffusion of olefins in 8-ring solid acid microporous zeolites. J Phys Chem C 119:23721–23734

    Article  CAS  Google Scholar 

  23. Vessal B, Leslie M, Catlow CRA (1989) Molecular dynamics simulation of silica glass. Mol Simul 3:123–136

    Article  Google Scholar 

  24. Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem Soc Chem Commun 19:1271–1273

    Article  Google Scholar 

  25. Toda J, Corma A, Abudawoud RH, Elanany MS, Al-Zahrani IM, Sastre G (2015) Influence of force fields on the selective diffusion of para-xylene over ortho-xylene in 10-ring zeolites. Mol Simul 41:1438–1448

    Article  CAS  Google Scholar 

  26. Gale JD, Wright K (2010) Lattice dynamics from force-fields as a technique for mineral physics. Rev Miner Geochem 71:391–411

    Article  CAS  Google Scholar 

  27. O’Keeffe M, Hyde BG (1978) On Si–O–Si configurations in silicates. Acta Cryst B 34:27–32

    Article  Google Scholar 

  28. Wragg DS, Morris RE, Burton AW (2008) Pure silica zeolite-type frameworks: a structural analysis. Chem Mater 20:1561–1570

    Article  CAS  Google Scholar 

  29. Hill J-R, Freeman CM, Subramanian L (2000) Use of force fields in materials modeling. Rev Comput Chem 16;141–216, Lipkowitz KB, Boyd DB (eds) Wiley-VCH, New York

  30. Combariza AF, Gomez DA, Sastre G (2013) Simulating the properties of small pore silica zeolites using interatomic potentials. Chem Soc Rev 42:114–127

    Article  CAS  Google Scholar 

  31. Foster MD, Rivin I, Treacy MMJ, Delgado-Friedrichs O (2006) A geometric solution to the largest-free-sphere problem in zeolite frameworks. Micropor Mesopor Mater 90:32–38

    Article  CAS  Google Scholar 

  32. Deem MW, Newsam JM, Creighton JA (1992) Fluctuations in zeolite aperture dimensions simulated by crystal dynamics. J Am Chem Soc 114:7198–7207

    Article  CAS  Google Scholar 

  33. Curtis RA, Deem MW (2003) A statistical mechanics study of ring size, ring shape, and the relation to pores found in zeolites. J Phys Chem B 107:8612–8620

    Article  CAS  Google Scholar 

  34. Gounaris CE, Wei J, Floudas CA, Ranjan R, Tsapatsis M (2010) Rational design of shape selective separations and catalysis: lattice relaxation and effective aperture size. AIChE J 56:611–632

    CAS  Google Scholar 

  35. Haldoupis E, Nair S, Sholl DS (2011) Pore size analysis of >250000 hypothetical zeolites. Phys Chem Chem Phys 13:5053–5060

    Article  CAS  Google Scholar 

  36. Shi H, Migues AN, Auerbach SM (2014) Ab initio and classical simulations of the temperature dependence of zeolite pore sizes. Green Chem 16:875–884

    Article  CAS  Google Scholar 

  37. Krishna R, van Baten JM (2012) Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials. J Phys Chem C 116:23556–23568

    Article  CAS  Google Scholar 

  38. Fischer M, Angel RJ (2017) Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations. J Chem Phys 146:174111

    Article  Google Scholar 

Download references

Acknowledgements

G.S. thanks ASIC computational centre and Paco Rosich of UPV for making available their computational resources and insightful comments. G. S. thanks the Spanish government for the provision of Severo Ochoa (SEV 2012-0267) and CTQ2015-70126-R projects. Prof. David Dubbeldam is acknowledged for making available the CIF containing the structure of MFI-1989. Claudio Zicovich is warmly thanked by G. S. for a life full of little suggestions and big ideas, and for a ‘long-range’ friendship that started during our joint PhD studies at ITQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Sastre.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermúdez, D., Sastre, G. Calculation of pore diameters in zeolites. Theor Chem Acc 136, 116 (2017). https://doi.org/10.1007/s00214-017-2143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2143-6

Keywords

Navigation