Skip to main content
Log in

Activation of acetonitrile by gas-phase uranium: bond structure analysis and spin–flip reaction mechanism

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction mechanism of uranium atom with acetonitrile molecule has been systematically studied on the quintet and triplet spin-state potential energy surfaces (PESs) at B3LYP level of density functional theory. Reaction site prediction and bonding evolution were analyzed using different methods. Crossing seams and possible spin inversion processes between different PESs are discussed by means of spin–orbit coupling (SOC) calculations. The results show that there are three crossing points in the reaction, which appear in the process of capturing hydrogen atom. Larger SOC constant (1545.80 cm−1) and intersystem crossing (ISC) probability (<P ISC> = 0.72) between quintet and triplet indicate that the effective ISC would occur in the vicinity of the minimum energy crossing points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lyon J-T, Andrews L (2007) Inorg Chem 46:4799–4808

    Article  CAS  Google Scholar 

  2. Cho H-G, Andrews L, Vlaisavljevich B et al (2009) Organometallics 28:5623–5632

    Article  CAS  Google Scholar 

  3. Si Y, Zhang W, Zhao Y (2012) J Phys Chem A 116:2583–2590

    Article  CAS  Google Scholar 

  4. Niu W, Zhang H, Li P, Gao T (2015) Int J Quantum Chem 115:6–18

    Article  CAS  Google Scholar 

  5. Wang X-L, Wang Y-C, Li S et al (2016) J Phys Chem A 120:5457–5463

    Article  CAS  Google Scholar 

  6. Shaik S, Danovich D, Fiedler A, Schwarz H (1995) Helv Chim Acta 78:1393–1407

    Article  CAS  Google Scholar 

  7. Shaik S, De-Visser S-P, Ogliaro F, Schwarz H, Schröder D (2002) Curr Opin Chem Biol 6:556–567

    Article  CAS  Google Scholar 

  8. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  Google Scholar 

  9. Shaik S (2013) Int J Mass Spectrom 354:5–14

    Article  Google Scholar 

  10. Cho H-G, Andrews L (2015) Eur J Inorg Chem 2015:4379–4387

    Article  CAS  Google Scholar 

  11. Cho H-G, Andrews L (2012) Organometallics 31:6095–6105

    Article  CAS  Google Scholar 

  12. Li Q, Qiu Y-X, Chen X-Y, Schwarz W-E, Wang S-G (2012) Phys Chem Chem Phys 14:6833–6841

    Article  CAS  Google Scholar 

  13. Li Q, Chen X-Y, Qiu Y-X, Wang S-G (2012) J Phys Chem A 116:5019–5025

    Article  CAS  Google Scholar 

  14. Xiao Y, Ji W-X, Chen X-Y et al (2014) Dalton Trans 43:9508–9517

    Article  CAS  Google Scholar 

  15. Jin Y, Wang Y, Ji D (2013) Comput Theor Chem 1011:75–81

    Article  CAS  Google Scholar 

  16. Ji D, Wang Y, Jin Y et al (2012) Int J Quantum Chem 112:3685–3690

    Article  CAS  Google Scholar 

  17. Cho H-G, Andrews L (2011) Organometallics 31:535–544

    Article  Google Scholar 

  18. Su M-D, Chu S-Y (1999) J Am Chem Soc 121:4229–4237

    Article  CAS  Google Scholar 

  19. Harvey J-N (2006) Annu Rep Prog Chem Sect C: Phys Chem 102:203–226

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr R-G (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  21. Raghavachari K, Trucks G-W (1989) J Chem Phys 91:1062–1065

    Article  Google Scholar 

  22. Becke A-D (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  23. Küchle W, Dolg M, Stoll H et al (1994) J Chem phys 100:7535–7542

    Article  Google Scholar 

  24. Andrae D, Haeussermann U, Dolg M et al (1990) Theoret Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  25. Scuseria G-E, Schaefer H-F III (1989) J Chem Phys 90:3700–3703

    Article  CAS  Google Scholar 

  26. Purvis G-D III, Bartlett R-J (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  27. Dunning Jr T-H (1989) J Chem Phys 90:1007–1023

    Article  Google Scholar 

  28. Yoshizawa K, Shiota Y, Yamabe T (1999) J Chem Phys 111:538–545

    Article  CAS  Google Scholar 

  29. Harvey J-N, Poli R, Smith K-M (2003) Coord Chem Rev 238:347–361

    Article  Google Scholar 

  30. Harvey J-N, Aschi M, Schwarz H, Koch W (1998) Theor Chem Acc 99:95–99

    Article  CAS  Google Scholar 

  31. Granovsky A-A, www http://classic.chem.msu.su/gran/gamess/index.html. Schmidt. MW

  32. Gaenko A, DeFusco A, Varganov S-A, Martínez T-J, Gordon M-S (2014) J Phys Chem A 118:10902–10908

    Article  CAS  Google Scholar 

  33. Danovich D, Marian C-M, Neuheuser T, Peyerimhoff S-D, Shaik S (1998) J Phys Chem A 102:5923–5936

    Article  CAS  Google Scholar 

  34. Isobe H, Yamanaka S, Kuramitsu S, Yamaguchi K (2008) J Am Chem Soc 130:132–149

    Article  CAS  Google Scholar 

  35. Volkov MV, Ostrovsky VN (2004) J Phys B-At Mol Opt 37:4069

    Article  CAS  Google Scholar 

  36. Goodrow A, Bell AT, Head-Gordon M (2009) J Phys Chem C 113:19361–19364

    Article  CAS  Google Scholar 

  37. Kaliakin DS, Zaari RR, Varganov SA (2015) J Phys Chem A 119:1066–1073

    Article  CAS  Google Scholar 

  38. Lu T, Chen F (2012) J Mol Graph Model 38:314–323

    Article  Google Scholar 

  39. Becke A-D, Edgecombe K-E (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  40. Alikhani M-E, Michelini M-C, Russo N, Silvi B (2008) J Phys Chem A 112:12966–12974

    Article  CAS  Google Scholar 

  41. Bader R (1990) A Quantum Theory. Oxford, England, Clarendon

    Google Scholar 

  42. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  43. Cremer D, Kraka E (1984) Angew Chem Int Ed 23:627–628

    Article  Google Scholar 

  44. Di Santo E, Michelini M-C, Russo N (2009) Organometallics 28:3716–3726

    Article  Google Scholar 

  45. De Almeida K, Ramalho T, Neto J, Santiago R, Felicíssimo V, Duarte H (2013) Organometallics 32:989–999

    Article  Google Scholar 

  46. Du J, Sun X, Chen J, Zhang L, Jiang G (2014) Dalton Trans 43:5574–5579

    Article  CAS  Google Scholar 

  47. Danovich D, Shaik S (1997) J Am Chem Soc 119:1773–1786

    Article  CAS  Google Scholar 

  48. Kennedy C-J, Siviloglou G-A, Miyake H, Burton W-C, Ketterle W (2013) Phys Rev Lett 111:225301

    Article  Google Scholar 

  49. Cimas A, Rayón V-M, Aschi M, Barrientos C, Sordo J-A, Largo A (2005) J Chem Phys 123:114312

    Article  Google Scholar 

  50. Cimas A, Rayón V, Barrientos C, Aschi M, Sordo J, Largo A (2006) Chem Phys 328:45–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Grant No. 21263023) and support from the Supercomputing Center of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongcheng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Y., Li, S. et al. Activation of acetonitrile by gas-phase uranium: bond structure analysis and spin–flip reaction mechanism. Theor Chem Acc 136, 107 (2017). https://doi.org/10.1007/s00214-017-2137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2137-4

Keywords

Navigation