Skip to main content
Log in

Comprehensive approach to simulate vibrationally resolved phosphorescence spectra of gold(III) complexes using DFT including temperature effects

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The present paper reports on a full quantum investigation of the optical properties of six Au(III) luminescent complexes. Among others, the most striking result concerns the reproduction of the luminescent spectra of two key complexes. These simulations are in very good agreement with the measured data when temperature effects are included in the computations. Vibrational modes involved in the emission signature are assigned for one complex. In this comprehensive approach, the model used is very complete and takes into account solvent effects and vibrational contributions to the electronic transitions among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585–1595. doi:10.1002/adma.200400684

    Article  Google Scholar 

  2. Sun Y, Forrest SR (2007) High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Appl Phys Lett 91:263503. doi:10.1063/1.2827178

    Article  Google Scholar 

  3. Chen C-Y, Pootrakulchote N, Chen M-Y et al (2012) A new heteroleptic ruthenium sensitizer for transparent dye-sensitized solar cells. Adv Energy Mater 2:1503–1509. doi:10.1002/aenm.201200285

    Article  CAS  Google Scholar 

  4. Schulze M, Steffen A, Würthner F (2015) Near-IR phosphorescent ruthenium(II) and iridium(III) perylene bisimide metal complexes. Angew Chemie Int Ed 54:1570–1573. doi:10.1002/anie.201410437

    Article  CAS  Google Scholar 

  5. Lundqvist MJ, Galoppini E, Meyer GJ, Persson P (2007) Calculated optoelectronic properties of ruthenium tris-bipyridine dyes containing oligophenyleneethynylene rigid rod linkers in different chemical environments. J Phys Chem A 111:1487–1497. doi:10.1021/jp064219x

    Article  CAS  Google Scholar 

  6. Chou C-C, Hu F-C, Yeh H-H et al (2014) Highly efficient dye-sensitized solar cells based on panchromatic ruthenium sensitizers with quinolinylbipyridine anchors. Angew Chemie Int Ed 53:178–183. doi:10.1002/anie.201305975

    Article  CAS  Google Scholar 

  7. Kinoshita T, Dy JT, Uchida S et al (2013) Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nat Photonics 7:535–539. doi:10.1038/nphoton.2013.136

    Article  CAS  Google Scholar 

  8. Heinze K, Hempel K, Tschierlei S et al (2009) Resonance Raman studies of bis(terpyridine)ruthenium(II) amino acid esters and diesters. Eur J Inorg Chem 2009:3119–3126. doi:10.1002/ejic.200900309

    Article  Google Scholar 

  9. Muhavini Wawire C, Jouvenot D, Loiseau F et al (2014) Density-functional study of luminescence in polypyridine ruthenium complexes. J Photochem Photobiol A Chem 276:8–15. doi:10.1016/j.jphotochem.2013.10.018

    Article  Google Scholar 

  10. Bhuiyan AA, Kincaid JR (1998) Synthesis and photophysical properties of zeolite-entrapped bisterpyridine ruthenium(II). Dramatic consequences of ligand-field-state destabilization. Inorg Chem 37:2525–2530. doi:10.1021/ic970950u

    Article  CAS  Google Scholar 

  11. Basu A, Gafney HD, Strekas TC (1982) Resonance Raman spectra of ruthenium(II) complexes of bipyridine and substituted bipyridines: ground- and excited-state properties. Inorg Chem 21:2231–2235. doi:10.1021/ic00136a021

    Article  CAS  Google Scholar 

  12. Labat F, Ciofini I, Hratchian HP et al (2011) Insights into working principles of ruthenium polypyridyl dye-sensitized solar cells from first principles modeling. J Phys Chem C 115:4297–4306. doi:10.1021/jp108917c

    Article  CAS  Google Scholar 

  13. Gorelsky SI, Lever ABP (2001) Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J Organomet Chem 635:187–196. doi:10.1016/S0022-328X(01)01079-8

    Article  CAS  Google Scholar 

  14. Guimaraes RR, Parussulo ALA, Toma HE, Araki K (2013) New tunable ruthenium complex dyes for TiO2 solar cells. Inorgan Chim Acta 404:23–28. doi:10.1016/j.ica.2013.04.016

    Article  CAS  Google Scholar 

  15. Vazart F, Latouche C (2015) Validation of a computational protocol to simulate near IR phosphorescence spectra for Ru(II) and Ir(III) metal complexes. Theor Chem Acc 134:1–7. doi:10.1007/s00214-015-1737-0

    Article  CAS  Google Scholar 

  16. Broeckx LEE, Delaunay W, Latouche C et al (2013) C–H activation of 2,4,6-triphenylphosphinine: synthesis and characterization of the first homoleptic phosphinine-iridium(III) complex fac-[Ir(C^P)3]. Inorg Chem 52:10738–10740. doi:10.1021/ic401933m

    Article  CAS  Google Scholar 

  17. Dragonetti C, Colombo A, Marinotto D et al (2014) Functionalized styryl iridium(III) complexes as active second-order NLO chromophores and building blocks for SHG polymeric films. J Organomet Chem 751:568–572. doi:10.1016/j.jorganchem.2013.09.003

    Article  CAS  Google Scholar 

  18. De AF, Belpassi L, Fantacci S (2009) Spectroscopic properties of cyclometallated iridium complexes by TDDFT. J Mol Struct THEOCHEM 914:74–86. doi:10.1016/j.theochem.2009.07.025

    Article  Google Scholar 

  19. Sun H, Liu S, Lin W et al (2014) Smart responsive phosphorescent materials for data recording and security protection. Nat Commun 5:3601. doi:10.1038/ncomms4601

    Google Scholar 

  20. Belaidi H, Belaidi S, Katan C et al (2016) Vibronic coupling to simulate the phosphorescence spectra of Ir(III)-based OLED systems: TD-DFT results meet experimental data. J Mol Model 22:265. doi:10.1007/s00894-016-3132-8

    Article  Google Scholar 

  21. Lepeltier M, Le Bozec H, Guerchais V et al (2005) Tris-cyclometalated iridium(III) styryl complexes and their saturated analogues: direct functionalization of Ir(4-Me-ppy)3 and hydrogen transfer process. Organometallics 24:6069–6072. doi:10.1021/om050383f

    Article  CAS  Google Scholar 

  22. Okada S, Okinaka K, Iwawaki H et al (2005) Substituent effects of iridium complexes for highly efficient red OLEDs. Dalton Trans. doi:10.1039/B417058J

    Google Scholar 

  23. Latouche C, Lanoë P-H, Williams JAG et al (2011) Switching of excited states in cyclometalated platinum complexes incorporating pyridyl-acetylide ligands (Pt–CRC–py): a combined experimental and theoretical study. New J Chem 35:2196. doi:10.1039/c1nj20225a

    Article  CAS  Google Scholar 

  24. Boixel J, Guerchais V, Le Bozec H et al (2014) Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. J Am Chem Soc 136:5367–5375. doi:10.1021/ja4131615

    Article  CAS  Google Scholar 

  25. Rajendra Kumar G, Thilagar P (2016) Tuning the phosphorescence and solid state luminescence of triarylborane-functionalized acetylacetonato platinum complexes. Inorg Chem 55:12220–12229. doi:10.1021/acs.inorgchem.6b01827

    Article  CAS  Google Scholar 

  26. Savel P, Latouche C, Roisnel T et al (2013) Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode. Dalton Trans 42:16773. doi:10.1039/c3dt51925b

    Article  CAS  Google Scholar 

  27. Culham S, Lanoë P-H, Whittle VL et al (2013) Highly luminescent dinuclear platinum(II) complexes incorporating bis-cyclometallating pyrazine-based ligands: a versatile approach to efficient red phosphors. Inorg Chem 52:10992–11003. doi:10.1021/ic401131x

    Article  CAS  Google Scholar 

  28. Colombo A, Dragonetti C, Marinotto D et al (2013) Cyclometalated 4-styryl-2-phenylpyridine platinum(II) acetylacetonate complexes as second-order NLO building blocks for SHG active polymeric films. Organometallics 32:3890–3894. doi:10.1021/om4003472

    Article  CAS  Google Scholar 

  29. Barbieri A, Accorsi G, Armaroli N (2008) Luminescent complexes beyond the platinum group: the d10 avenue. Chem Commun. doi:10.1039/B716650H

    Google Scholar 

  30. Latouche C, Skouteris D, Palazzetti F, Barone V (2015) TD-DFT benchmark on inorganic Pt(II) and Ir(III) complexes. J Chem Theory Comput 11:3281–3289. doi:10.1021/acs.jctc.5b00257

    Article  CAS  Google Scholar 

  31. Prokhorov AM, Hofbeck T, Czerwieniec R et al (2014) Brightly luminescent Pt(II) pincer complexes with a sterically demanding carboranyl-phenylpyridine ligand: a new material class for diverse optoelectronic applications. J Am Chem Soc 136:9637–9642. doi:10.1021/ja503220w

    Article  CAS  Google Scholar 

  32. Zhang Y, Clavadetscher J, Bachmann M et al (2014) Tuning the luminescent properties of Pt(II) acetylide complexes through varying the electronic properties of N-heterocyclic carbene ligands. Inorg Chem 53:756–771. doi:10.1021/ic401841n

    Article  CAS  Google Scholar 

  33. Gourlaouen C, Daniel C (2014) Spin-orbit effects in square-planar Pt(II) complexes with bidentate and terdentate ligands: theoretical absorption/emission spectroscopy. Dalton Trans 43:17806–17819. doi:10.1039/C4DT01822B

    Article  CAS  Google Scholar 

  34. Zaarour M, Singh A, Latouche C et al (2013) Linear and nonlinear optical properties of tris-cyclometalated phenylpyridine Ir(III) complexes incorporating π-conjugated substituents. Inorg Chem 52:7987–7994. doi:10.1021/ic400541e

    Article  CAS  Google Scholar 

  35. Lamansky S, Djurovich P, Murphy D et al (2001) Synthesis and characterization of phosphorescent cyclometalated iridium complexes. Inorg Chem 40:1704–1711. doi:10.1021/ic0008969

    Article  CAS  Google Scholar 

  36. Wu S-H, Burkhardt SE, Yao J et al (2011) Near-infrared absorbing and emitting RuII–PtII heterodimetallic complexes of Dpdpz (Dpdpz = 2,3-Di(2-pyridyl)-5,6-diphenylpyrazine). Inorg Chem 50:3959–3969. doi:10.1021/ic1023696

    Article  CAS  Google Scholar 

  37. Vazart F, Latouche C, Bloino J, Barone V (2015) Vibronic coupling investigation to compute phosphorescence spectra of Pt(II) complexes. Inorg Chem 54:5588–5595. doi:10.1021/acs.inorgchem.5b00734

    Article  CAS  Google Scholar 

  38. Latouche C, Barone V (2014) Computational chemistry meets experiments for explaining the behavior of bibenzyl: a thermochemical and spectroscopic (infrared, Raman, and NMR) investigation. J Chem Theory Comput 10:5586–5592. doi:10.1021/ct500930b

    Article  CAS  Google Scholar 

  39. Fabian J (2010) TDDFT-calculations of Vis/NIR absorbing compounds. Dye Pigment 84:36–53. doi:10.1016/j.dyepig.2009.06.008

    Article  CAS  Google Scholar 

  40. Wang F, Ziegler T (2004) Time-dependent density functional theory based on a noncollinear formulation of the exchange-correlation potential. J Chem Phys 121:12191–12196. doi:10.1063/1.1821494

    Article  CAS  Google Scholar 

  41. Eilmes A (2012) A DFT/TDDFT study on spectral effects of metal ion interactions with benzofurazan-based fluorescent probes. Spectrochim Acta Part A Mol Biomol Spectrosc 98:27–34. doi:10.1016/j.saa.2012.08.019

    Article  CAS  Google Scholar 

  42. Liao J-H, Dhayal RS, Wang X et al (2014) Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry. Inorg Chem 53:11140–11145. doi:10.1021/ic501747e

    Article  CAS  Google Scholar 

  43. Jacquemin D, Perpète EA, Scuseria GE et al (2008) Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes. Chem Phys Lett 465:226–229. doi:10.1016/j.cplett.2008.09.071

    Article  CAS  Google Scholar 

  44. Jacquemin D, Perpète EA, Scuseria GE et al (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135. doi:10.1021/ct700187z

    Article  CAS  Google Scholar 

  45. Savarese M, Raucci U, Netti PA et al (2014) Modeling of charge transfer processes to understand photophysical signatures: the case of Rhodamine 110. Chem Phys Lett 610–611:148–152. doi:10.1016/j.cplett.2014.07.023

    Article  Google Scholar 

  46. Walter M, Akola J, Lopez-Acevedo O et al (2008) A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci 105:9157–9162. doi:10.1073/pnas.0801001105

    Article  CAS  Google Scholar 

  47. Massuyeau F, Faulques E, Latouche C (2017) New insights to simulate the luminescence properties of Pt(II) complexes using quantum calculations. J Chem Theory Comput 13:1748–1755. doi:10.1021/acs.jctc.7b00103

    Article  CAS  Google Scholar 

  48. Au VK-M, Tsang DP-K, Wong KM-C et al (2013) Functionalized bis-cyclometalated alkynylgold(III) complexes: synthesis, characterization, electrochemistry, photophysics, photochemistry, and electroluminescence studies. Inorg Chem 52:12713–12725. doi:10.1021/ic4019212

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB et al Gaussian ~ 09 {R}evision {D}.01

  50. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  51. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036. doi:10.1063/1.478401

    Article  CAS  Google Scholar 

  52. Dunning TH Jr, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer H III (ed) Methods Electron. Struct. Theory SE, vol 1. Springer. US, Berlin, pp 1–27

    Google Scholar 

  53. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299. doi:10.1063/1.448975

    Article  CAS  Google Scholar 

  54. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270. doi:10.1063/1.448799

    Article  CAS  Google Scholar 

  55. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284. doi:10.1063/1.448800

    Article  CAS  Google Scholar 

  56. Latouche C, Lee Y-C, Liao J-H et al (2012) Structure and spectroscopic properties of gold(I) diselenophosph(in)ate complexes: a joint experimental and theoretical study. Inorg Chem 51:11851–11859. doi:10.1021/ic301763k

    Article  CAS  Google Scholar 

  57. Latouche C, Lin Y-R, Tobon Y et al (2014) Au–Au chemical bonding induced by UV irradiation of dinuclear gold(I) complexes: a computational study with experimental evidence. Phys Chem Chem Phys 16:25840–25845. doi:10.1039/C4CP03990D

    Article  CAS  Google Scholar 

  58. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi:10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  59. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  60. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  61. Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824. doi:10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  62. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539. doi:10.1103/PhysRevB.54.16533

    Article  CAS  Google Scholar 

  63. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241. doi:10.1007/s00214-007-0310-x

    Article  Google Scholar 

  64. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. doi:10.1039/B810189B

    Article  CAS  Google Scholar 

  65. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43. doi:10.1063/1.1480445

    Article  CAS  Google Scholar 

  66. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107:3210. doi:10.1063/1.474671

    Article  CAS  Google Scholar 

  67. Barone V, Baiardi A, Biczysko M et al (2012) Implementation and validation of a multi-purpose virtual spectrometer for large systems in complex environments. Phys Chem Chem Phys 14:12404–12422. doi:10.1039/C2CP41006K

    Article  CAS  Google Scholar 

  68. Barone V, Bloino J, Biczysko M, Santoro F (2009) Fully integrated approach to compute vibrationally resolved optical spectra: from small molecules to macrosystems. J Chem Theory Comput 5:540–554. doi:10.1021/ct8004744

    Article  CAS  Google Scholar 

  69. Latouche C, Palazzetti F, Skouteris D, Barone V (2014) High-accuracy vibrational computations for transition metal complexes including anharmonic corrections: ferrocene, ruthenocene and osmocene as test cases. J Chem Theory Comput 10:4565–4573. doi:10.1021/ct5006246

    Article  CAS  Google Scholar 

  70. Baiardi A, Latouche C, Bloino J, Barone V (2014) Accurate yet feasible computations of resonance Raman spectra for metal complexes in solution: [Ru(bpy)3](2+) as a case study. Dalton Trans 43:17610–17614. doi:10.1039/c4dt02151g

    Article  CAS  Google Scholar 

  71. Licari D, Baiardi A, Biczysko M et al (2015) Implementation of a graphical user interface for the virtual multifrequency spectrometer: the VMS-Draw tool. J Comput Chem 36:321–334. doi:10.1002/jcc.23785

    Article  CAS  Google Scholar 

  72. Egidi F, Bloino J, Cappelli C, Barone V (2014) A robust and effective time-independent route to the calculation of resonance Raman spectra of large molecules in condensed phases with the inclusion of Duschinsky, Herzberg-Teller, anharmonic, and environmental effects. J Chem Theory Comput 10:346–363. doi:10.1021/ct400932e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research used resources of CCIPL (Centre de Calcul Intensif des Pays de Loire). Prof. Vincenzo Barone (SNS Pisa, Italy), who made available the VMS package developed in his laboratory, is greatly acknowledged. The authors thank Drs Kahina Bakhouche and Mohamed-Ali Benmensour for their helpful discussions. The authors are grateful to GENCI-IDRIS and GENCI-CINES for an allocation of computing time (Grant No. 2016-2017-080649).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdou Boucekkine or Camille Latouche.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayache, H., Hammoutène, D., Fritsch, E. et al. Comprehensive approach to simulate vibrationally resolved phosphorescence spectra of gold(III) complexes using DFT including temperature effects. Theor Chem Acc 136, 108 (2017). https://doi.org/10.1007/s00214-017-2135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2135-6

Keywords

Navigation