Advertisement

Aminolysis of a model carbamate insecticide: a theoretical reaction mechanism study of carbaryl via an isocyanate intermediate

  • Chaoqing Zhang
  • Hui Yin
  • Xiaoling Luo
  • Rong ChenEmail author
  • Guoming Liang
Regular Article

Abstract

The possible aminolysis pathways of carbaryl are investigated by using the B3LYP/6-311++G(d,p), M06-2X/6-311++G(d,p) and MP2/6-311++G(d,p) levels. The uncatalyzed, base-catalyzed and water-catalyzed aminolyses are explored in our calculation. For each case, three alterative channels, the concerted, addition–elimination (BAC2) and elimination–addition (E1cB) channel via an isocyanate, are evaluated. Our results convincingly demonstrate that the most favorable mechanism is the E1cB channel for all of the aminolysis reactions in the gas phase. For BAC2 and E1cB routes, the first stage is the rate-determining step. The base-catalyzed and water-catalyzed aminolysis reactions have more advantages to the uncatalyzed one. The solvent effect for acetonitrile does not notably alter the mechanism of the aminolysis.

Keywords

Aminolysis mechanism Carbaryl Catalytic effects PCM 

Notes

Acknowledgements

This work was supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 11347161) and Chongqing Normal University (Grant No. 14XYY008). We greatly acknowledge the Supercomputing Environment of Chinese Academy Sciences.

References

  1. 1.
    Bruice TC, Benkovic SJ (1969) Catalysis in chemistry and enzymology. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Page MI, Williams A (1997) Organic and bioorganic mechanisms. Longmans, HarlowGoogle Scholar
  3. 3.
    Dittert LW, Higuchi T (1963) J Pharm Sci 52:852–857CrossRefGoogle Scholar
  4. 4.
    Adams P, Baron FA (1965) Chem Rev 65:567–602CrossRefGoogle Scholar
  5. 5.
    Williams A (1972) J Chem Soc Perkin Trans 2:808–812CrossRefGoogle Scholar
  6. 6.
    Hegarty AF, Frost LN (1973) J Chem Sco Perkin Trans 2:937–940Google Scholar
  7. 7.
    Bergon M, Calmon JP (1981) Tetrahedron Lett 22:937–940CrossRefGoogle Scholar
  8. 8.
    Ilieva S, Nalbantova D, Hadjieva B, Galabov B (2013) J Org Chem 78:6440–6449CrossRefGoogle Scholar
  9. 9.
    Rangelov MA, Vayssilov GN, Yomtova VM, Petkov DD (2006) J Am Chem Soc 128:4964–4965CrossRefGoogle Scholar
  10. 10.
    Muth GW, Ortoleva-Donnely L, Strobel SA (2000) Science 289:947–950CrossRefGoogle Scholar
  11. 11.
    Ban N, Nissen P, Hanssen J, Moore PB, Steitz T (2000) Science 289:905–920CrossRefGoogle Scholar
  12. 12.
    Menger FM, Glass LE (1974) J Org Chem 39:2469–2470CrossRefGoogle Scholar
  13. 13.
    Shawali AS, Harhash A, Sidky MM, Hassaneen HM, Elkaabi SS (1986) J Org Chem 51:3498–3501CrossRefGoogle Scholar
  14. 14.
    Koh HJ, Kim OS, Lee HW, Lee I (1997) J Phys Org Chem 10:725–730CrossRefGoogle Scholar
  15. 15.
    Oh HK, Park JE, Sung DD, Lee I (2004) J Org Chem 69:3150–3153CrossRefGoogle Scholar
  16. 16.
    Oh HK, Jin YC, Sung DD, Lee I (2005) Org Biomol Chem 3:1240–1244CrossRefGoogle Scholar
  17. 17.
    Castro EA, Cubillos M, Iglesias R, Santos JG (2012) Int J Chem Kinet 44:604–611CrossRefGoogle Scholar
  18. 18.
    Sung KS, Zhuang BR, Huang PM, Jhong SW (2008) J Org Chem 73:4027–4033CrossRefGoogle Scholar
  19. 19.
    Lee HW, Oh HK (2010) Bull Korean Chem Soc 31:475–478CrossRefGoogle Scholar
  20. 20.
    Bunnett JF, Davis GT (1960) J Am Chem Soc 82:665–674CrossRefGoogle Scholar
  21. 21.
    Jencks WP, Carriuolo J (1960) J Am Chem Soc 82:675–681CrossRefGoogle Scholar
  22. 22.
    Bruice TC, Mayahi MF (1960) J Am Chem Soc 82:3067–3071CrossRefGoogle Scholar
  23. 23.
    Williams A (1989) Acc Chem Res 22:387–392CrossRefGoogle Scholar
  24. 24.
    Castro EA (1999) Chem Rev 99:3505–3524CrossRefGoogle Scholar
  25. 25.
    Oh HK, Ku MH, Lee HW, Lee I (2002) J Org Chem 67:8995–8998CrossRefGoogle Scholar
  26. 26.
    Singleton DA, Merrigan SR (2000) J Am Chem Soc 122:11035–11036CrossRefGoogle Scholar
  27. 27.
    Um IH, Min JS, Ahn JA, Hahn HJ (2000) J Org Chem 65:5659–5663CrossRefGoogle Scholar
  28. 28.
    Um IH, Kim KH, Park H, Fujio M, Tsuno Y (2004) J Org Chem 69:3937–3942CrossRefGoogle Scholar
  29. 29.
    Ilieva S, Galabov B, Musaev DG, Morokuma K, Schaefer HF (2003) J Org Chem 68:1496–1502CrossRefGoogle Scholar
  30. 30.
    Galabov B, Atanasov Y, Ilieva S, Schaefer HF (2005) J Phys Chem A 109:11470–11474CrossRefGoogle Scholar
  31. 31.
    Bruice TC, Benkovic SJ (1966) Bioorganic mechanisms. W. A. Benjamin, New YorkGoogle Scholar
  32. 32.
    Furuya Y, Goto S, Itoho K, Urasaki I, Morita A (1968) Tetrahedron 24:2367–2375CrossRefGoogle Scholar
  33. 33.
    Furuya Y, Itoho SK, Shibata O, Ohkubo K (1972) Chem Lett 1:971–974CrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford CTGoogle Scholar
  35. 35.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  36. 36.
    Becke AD (1996) J Chem Phys 104:1040–1046CrossRefGoogle Scholar
  37. 37.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  38. 38.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  39. 39.
    Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849–1868CrossRefGoogle Scholar
  40. 40.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.College of ChemistryChongqing Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations