Advertisement

Microscopic analysis of AgCl polymorphism

  • Julia Contreras-GarcíaEmail author
  • Miriam Marqués
  • J. Manuel Recio
Regular Article
  • 213 Downloads
Part of the following topical collections:
  1. 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016)

Abstract

A detailed theoretical study of the structural properties of the phases involved in the pressure-induced polymorphic sequence of AgCl is reported. As many other binary ionic compounds, AgCl crystallizes in the B1 (NaCl-type) structure at ambient pressure and shows a high-pressure B2 (CsCl-type) structure under pressure. However, unlike alkali halides, there is not a direct transformation from one to the other. The greater polarizability of the silver chloride structure enables the stabilization of two other phases in between B1 and B2: the monoclinic (KOH-type) and the orthorhombic (TlI-type, B33) structures. This polymorphic sequence is specially interesting, since a concerted transition pathway within the monoclinic KOH-type symmetry has also been proposed as a transition pathway in the B1 \(\rightarrow\) B2 transformation. This would point at a connection between symmetries that are thermodynamically and kinetically stabilized, with phases that appear under pressure being good candidates for mechanistic analyses. Our calculations yield cell parameters and structural behavior under pressure in overall good agreement with available experimental data for all these phases and extend the information previously observed for the four polymorphs (e.g., compressibilities). Computed transition pressures confirm the B1\(\,\rightarrow\,\)KOH-type\(\,\rightarrow \,\)B33 sequence. In order to analyze the occurrence of the KOH-type phase between the B1 and B33 phases, we have resorted to the Atoms In Molecules approach to obtain the evolution of charges with pressure. We find that the descent to the KOH-type symmetry provides a continuous change in ionic charges between B1 and B33 phases, which implies a smaller stress. Thus, coupling group–subgroup relationships to chemical bond analysis can provide microscopic insight into why a given symmetry is favored.

Keywords

Polymorphism AgCl Ionicity AIM Group–subgroup High pressure 

Notes

Acknowledgements

Financial support from Principado de Asturias (GRUPIN14-049) and the Spanish MINECO Projects (CTQ2015-67755-C2-R and MAT2015-71070-REDC) is gratefully acknowledged.

References

  1. 1.
    Glass CW, Oganov AR, Hansen N (2006) Comput Phys Comm 175:713CrossRefGoogle Scholar
  2. 2.
    Lonie DC, Zurek E (2011) Comput Phys Commun 182:372CrossRefGoogle Scholar
  3. 3.
    Martonak R, Laio A, Bernasconi M, Ceriani C, Raiteri P, Parrinello M (2005) Z Krist 220:489Google Scholar
  4. 4.
    Hemley RJ (2010) High Press Res 30:581CrossRefGoogle Scholar
  5. 5.
    Contreras-Garcia J, Silvi B, Recio JM (2011) Modern charge density analysis. Springer, ISBN 978-90-481-3835-7Google Scholar
  6. 6.
    Boto RA, Marques M, Beltran A, Andres J, Riffet V, Labet V, Contrersas-Garcia J, (2016) An introduction to high-pressure science and technology. CRC Press, ISBN 9781498736220Google Scholar
  7. 7.
    Recio JM, Martín Pendás A, Francisco E, Luaña V (1993) Phys Rev B 48:5891CrossRefGoogle Scholar
  8. 8.
    Martín Pendás A, Luaña V, Recio JM, Flórez M, Francisco E, Blanco MA, Kantorovich LN (1994) Phys Rev B 49:3066CrossRefGoogle Scholar
  9. 9.
    Martín Pendás A, Recio JM, Francisco E, Luaña V (1997) Phys Rev B 56:3010CrossRefGoogle Scholar
  10. 10.
    Flórez M, Recio JM, Francisco E, Blanco MA, Martín Pendás A (2002) Phys Rev B 66:144112CrossRefGoogle Scholar
  11. 11.
    Blanco MA, Francisco E, Luaña (2004) Comp Phys Comm 158:57CrossRefGoogle Scholar
  12. 12.
    Léger CJM, Haines J, Oliveira LS (1998) J Phys Condens Matter 10:4201CrossRefGoogle Scholar
  13. 13.
    Marques M (2001) Efectos de polarización en la predicción de estructuras ortorrómbicas en haluros alcalinos. Universidad de Oviedo, Seminario de InvestigaciónGoogle Scholar
  14. 14.
    Kusaba K, Syono Y, Kikegawa T, Shimomura O (1995) J Phys Chem Solids 56:751CrossRefGoogle Scholar
  15. 15.
    Hull S, Keen DA (1999) Phys Rev B 59:750CrossRefGoogle Scholar
  16. 16.
    Catti M, Di Piazza L (2006) J Phys Chem B 110:1576CrossRefGoogle Scholar
  17. 17.
    Tolédano K, Knorr K, Ehm L, Depmeier W (2003) Phys Rev B 67:144106CrossRefGoogle Scholar
  18. 18.
    Stokes HT, Hatch DM, Dong J, Lewis JP (2004) Phys Rev B 69:174111CrossRefGoogle Scholar
  19. 19.
    Catti M (2004) J Phys Condens Matter 16:3909CrossRefGoogle Scholar
  20. 20.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  21. 21.
    Kresse G, Joubert J (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  23. 23.
    Oyoke CMI (2002) Phys Status Solidi B 234:580CrossRefGoogle Scholar
  24. 24.
    Otero-de-la-Roza A, Johnson ER, Contreras-García J (2012) Phys Chem Chem Phys 14:12165CrossRefGoogle Scholar
  25. 25.
    Stokes HT, Hatch DM (2002) Phys Rev B 65:144114CrossRefGoogle Scholar
  26. 26.
    Nunes GS, Allen PB, Martins JL (1998) Phys Rev B 57:5098CrossRefGoogle Scholar
  27. 27.
    Barder RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, OxfordGoogle Scholar
  28. 28.
    Gatti C (2005) Z Krist 220:399Google Scholar
  29. 29.
    Pereira ALJ, Gomis O, Sans JA, Contreras-García J, Manjon FJ, Rodriguez-Hernandez P, Munoz A, Beltran A (2016) Phys Rev B 93:224111CrossRefGoogle Scholar
  30. 30.
    Contreras-García J, Martín Pendás A, Recio JM (2008) J Phys Chem B 112:9787CrossRefGoogle Scholar
  31. 31.
    Contreras-García J, Martín Pendás A, Silvi B, Recio JM (2009) J Phys Chem B 113:1068CrossRefGoogle Scholar
  32. 32.
    Contreras-García J, Mori-Sanchez P, Silvi B, Recio JM (2009) J Chem Theor Comp 5:2108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Julia Contreras-García
    • 1
    Email author
  • Miriam Marqués
    • 2
  • J. Manuel Recio
    • 3
  1. 1.Laboratoire de Chimie Théorique (UPMC)Centre national de la recherche scientifique (CNRS)Paris Cedex 05France
  2. 2.SUPA, School of Physics and Astronomy, and Centre for Science at Extreme ConditionsThe University of EdinburghEdinburghUK
  3. 3.MALTA-Consolider Team and Departamento de Química Física y AnalíticaUniversidad de OviedoOviedoSpain

Personalised recommendations