Probing optical properties of thiophene derivatives for two-photon absorption

  • Ozlem Sengul
  • Esma Birsen Boydas
  • Mariachiara Pastore
  • Walid Sharmouk
  • Philippe C. Gros
  • Saron Catak
  • Antonio Monari
Regular Article
Part of the following topical collections:
  1. 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016)


We report a state-of-the-art characterization of the linear and nonlinear optical properties of two recent synthesized organic dyes based on the 2,5-dithienylpyrrole motifs. In particular after a careful conformational search was performed, the absorption spectra have been obtained at time-dependent density functional theory level taking into account vibrational and dynamical effects via a Wigner exploration of the potential energy surface. Furthermore, the excited state topology and electronic density reorganization have been characterized using natural transition orbitals and the charge transfer character quantified through recent developed descriptors, also allowing for the rationalization of the poor interfacial electron injection properties exhibited by the dyes when grafted on TiO2 surfaces. Finally, two-photon absorption spectra have been calculated, extremely high cross sections have been obtained in the infrared region paving the way to the possible exploitation of the previous dyes for the development of photoactive smart materials or photodynamic therapy.


Two-photon absorption (TPA) 2,5-Dithienylpyrrole (DTP) Time-dependent density functional (TD-DFT) Vibrational resolved spectra 



Support from the University of Lorraine and French CNRS is gratefully acknowledged. AM thanks Campus France for support under the bilateral “Bosphorus” 35649PL PHC program covering students mobility. SC acknowledges TUBITAK-PIA (Project No: 115Z863) for financial support.

Supplementary material

214_2017_2094_MOESM1_ESM.docx (10.4 mb)
Supplementary material 1 (DOCX 10,610 kb)


  1. 1.
    Schultz DM, Yoon TP (2014) Solar synthesis: prospects in visible light photocatalysis. Science 343:1239176-1–1239176-8CrossRefGoogle Scholar
  2. 2.
    Berardi S, Drouet S, Francàs L et al (2014) Molecular artificial photosynthesis. Chem Soc Rev 43:7501–7519CrossRefGoogle Scholar
  3. 3.
    Frischmann PD, Mahata K, Würthner F et al (2013) Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870CrossRefGoogle Scholar
  4. 4.
    Colasson B, Credi A, Ragazzon G (2016) Light-driven molecular machines based on ruthenium (II) polypyridine complexes: strategies and recent advances. Coord Chem Rev 325:125–134CrossRefGoogle Scholar
  5. 5.
    Browne WR, Feringa BL (2006) Making molecular machines work. Nat Nanotechnol 1:25–35CrossRefGoogle Scholar
  6. 6.
    Astumian RD, Mukherjee S, Warshel A (2016) The physics and physical chemistry of molecular machines. Chemphyschem 17:1719–1741CrossRefGoogle Scholar
  7. 7.
    Le Bailly B (2016) Nobel prize in chemistry: welcome to the machine. Nat Nanotechnol 11:923CrossRefGoogle Scholar
  8. 8.
    Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  9. 9.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  10. 10.
    Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19–33CrossRefGoogle Scholar
  11. 11.
    Pandey RK (2000) Recent advances in photodynamic therapy. J Porphyr Phthalocyanines 4:368–373CrossRefGoogle Scholar
  12. 12.
    Yuan Q, Wu Y, Wang J et al (2013) Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light. Angew Chem Int Ed 52:13965–13969CrossRefGoogle Scholar
  13. 13.
    Babilas P, Landthaler M, Szeimies R-M (2006) Photodynamic therapy in dermatology. Eur J Dermatol 16:340–348Google Scholar
  14. 14.
    Winkler K, Simon C, Finke M et al (2016) Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm). J Photochem Photobiol B Biol 162:340–347CrossRefGoogle Scholar
  15. 15.
    Koshi E, Mohan A, Rajesh S, Philip K (2011) Antimicrobial photodynamic therapy: an overview. J Indian Soc Periodontol 15:323CrossRefGoogle Scholar
  16. 16.
    Allison RR, Moghissi K (2013) Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagnosis Photodyn Ther 10:331–341CrossRefGoogle Scholar
  17. 17.
    Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther 7:61–75CrossRefGoogle Scholar
  18. 18.
    Tsai C-L, Chen J-C, Wang W-J (2001) Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng 21:7–14Google Scholar
  19. 19.
    Zhou H, Zhou F, Tang S et al (2012) Two-photon absorption dyes with thiophene as π electron bridge: synthesis, photophysical properties and optical data storage. Dye Pigment 92:633–641CrossRefGoogle Scholar
  20. 20.
    Zou Q, Zhao H, Zhao Y et al (2015) Effective two-photon excited photodynamic therapy of xenograft tumors sensitized by water-soluble bis(arylidene) cycloalkanone photosensitizers. J Med Chem 58:7949–7958CrossRefGoogle Scholar
  21. 21.
    Zheng Y-C, Zheng M-L, Li K et al (2015) Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Adv 5:770–774CrossRefGoogle Scholar
  22. 22.
    Abbotto A, Beverina L, Bozio R et al (2002) Novel heterocycle-based two-photon absorbing dyes. Org Lett 4(9):1495–1498CrossRefGoogle Scholar
  23. 23.
    Soos ZG, Galvao DS (1994) One- and two-photon excitations of polythiophene: role of nonconjugated heteroatoms. J Phys Chem 98:1029–1033CrossRefGoogle Scholar
  24. 24.
    Huang P-H, Shen J-Y, Pu S-C et al (2006) Synthesis and characterization of new fluorescent two-photon absorption chromophores. J Mater Chem 16:850–857CrossRefGoogle Scholar
  25. 25.
    Turan HT, Eken Y, Marazzi M et al (2016) Assessing one- and two-photon optical properties of boron containing arenes. J Phys Chem C 120:17916–17926CrossRefGoogle Scholar
  26. 26.
    Sharmoukh W, Attanzio A, Busatto E et al (2015) 2,5-Dithienylpyrrole (DTP) as a donor component in DTP-π-A organic sensitizers: photophysical and photovoltaic properties. RSC Adv 5:4041–4050CrossRefGoogle Scholar
  27. 27.
    Chantzis A, Very T, Monari A, Assfeld X (2012) Improved treatment of surrounding effects: UV/Vis absorption properties of a solvated Ru(II) complex. J Chem Theory Comput 8:1536–1541CrossRefGoogle Scholar
  28. 28.
    Etienne T, Very T, Perpète EA et al (2013) A QM/MM study of the absorption spectrum of harmane in water solution and interacting with DNA: the crucial role of dynamic effects. J Phys Chem B 117:4973–4980CrossRefGoogle Scholar
  29. 29.
    Gattuso H, Dumont E, Marazzi M, Monari A (2016) Two-photon-absorption DNA sensitization via solvated electrons production: unraveling the photochemical pathways by molecular modeling and simulation. Phys Chem Chem Phys 18:18598–18606CrossRefGoogle Scholar
  30. 30.
    Gattuso H, Assfeld X, Monari A (2015) Modeling DNA electronic circular dichroism by QM/MM methods and Frenkel Hamiltonian. Theor Chem Acc 134:225–232CrossRefGoogle Scholar
  31. 31.
    Marazzi M, Gattuso H, Monari A (2016) Nile blue and Nile red optical properties predicted by TD-DFT and CASPT2 methods: static and dynamic solvent effects. Theor Chem Acc 135:57CrossRefGoogle Scholar
  32. 32.
    Etienne T (2015) Probing the locality of excited states with linear algebra. J Chem Theory Comput 11:1692–1699. doi: 10.1021/ct501163b CrossRefGoogle Scholar
  33. 33.
    Etienne T, Assfeld X, Monari A (2014) New insight into the topology of excited states through detachment/attachment density matrices-based centroids of charge. J Chem Theory Comput 10:3906–3914CrossRefGoogle Scholar
  34. 34.
    Etienne T, Assfeld X, Monari A (2014) Toward a quantitative assessment of electronic transitions charge-transfer character. J Chem Theory Comput 10:3896–3905CrossRefGoogle Scholar
  35. 35.
    Becke A (1993) B3LYP. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  36. 36.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenber DJ (2009) Gaussian 09. Revision D.01, Inc, Wallingford CTGoogle Scholar
  38. 38.
    Slater JC (1951) A simplification of the Hartree-Fock method. Phys Rev 81:385–390CrossRefGoogle Scholar
  39. 39.
    Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128(8):084106-1–084106-15CrossRefGoogle Scholar
  40. 40.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  41. 41.
    Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  42. 42.
    Mennucci B (2012) Polarizable continuum model. Wiley Interdiscip Rev Comput Mol Sci 2:386–404CrossRefGoogle Scholar
  43. 43.
    Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct 464:211–226CrossRefGoogle Scholar
  44. 44.
    Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775–4777CrossRefGoogle Scholar
  45. 45.
    Dahl JP, Springborg M (1988) The Morse oscillator in position space, momentum space, and phase space. J Chem Phys 88:4535CrossRefGoogle Scholar
  46. 46.
    Barbatti M, Ruckenbauer M, Plasser F et al (2014) Newton-X: a surface-hopping program for nonadiabatic molecular dynamics. Wiley Interdiscip Rev Comput Mol Sci 4:26–33CrossRefGoogle Scholar
  47. 47.
    Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chemie-Int Ed 48:3244–3266CrossRefGoogle Scholar
  48. 48.
    Aidas K, Angeli C, Bak KL et al (2014) The Dalton quantum chemistry program system. Wiley Interdiscip Rev Comput Mol Sci 4:269–284CrossRefGoogle Scholar
  49. 49.
    Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128:044118–(1–8)Google Scholar
  50. 50.
    Jacquemin D, Wathelet V, Perpète EA, Adamo C (2009) Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J Chem Theory Comput 5:2420–2435CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of ChemistryBogazici UniversityBebekTurkey
  2. 2.Théorie-Modélisation-Simulation, SRSMCUniversité de Lorraine – NancyNancyFrance
  3. 3.Théorie-Modélisation-Simulation, SRSMCCNRSNancyFrance
  4. 4.Department of Inorganic ChemistryNational Research CentreDokkiEgypt
  5. 5.Hecrin SRSMCUniversité de Lorraine – NancyNancyFrance
  6. 6.Hecrin SRSMCCNRSNancyFrance

Personalised recommendations