Advertisement

Breakdown of the vibrationally adiabatic approximation in the early-barrier CH3 + HBr → CH4 + Br reaction

  • Yan Wang
  • Leilei Ping
  • Hongwei Song
  • Minghui Yang
Regular Article
  • 156 Downloads

Abstract

The prototypical hydrogen abstraction reaction between hydrogen bromide and methyl was investigated using both the eight-dimensional quantum dynamics and quasi-classical trajectory methods. The dynamics calculations showed that the individual excitation of the CH3 symmetric stretching mode, the umbrella mode and the HBr stretching mode visibly enhances the reaction while they are all less efficient than the translational energy in promoting the reaction, as expected for an early-barrier reaction. The vibrationally adiabatic approximation fails in predicting the promotional effect of the excitation energy in the CH3 umbrella mode. However, the promotional effect can be partially rationalized by the sudden vector projection model as there exists non-negligible coupling between the vector of the CH3 umbrella mode and the reaction coordinate vector at the transition state.

Keywords

Quantum dynamics Quasi-classical trajectory Polyatomic reaction Vibrationally adiabatic approximation 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 21603266 to H. Song and 21373266 to M. Yang).

References

  1. 1.
    Althorpe SC, Clary DC (2003) Annu Rev Phys Chem 54:493CrossRefGoogle Scholar
  2. 2.
    Clary DC (2008) Proc Natl Acad Sci USA 105:12649CrossRefGoogle Scholar
  3. 3.
    Nyman G, Yu H-G (2013) Int Rev Phys Chem 32:39CrossRefGoogle Scholar
  4. 4.
    Guo H, Liu K (2016) Chem Sci 7:3992CrossRefGoogle Scholar
  5. 5.
    Liu K (2016) Annu Rev Phys Chem 67:91CrossRefGoogle Scholar
  6. 6.
    Zhang DH, Guo H (2016) Annu Rev Phys Chem 67:135CrossRefGoogle Scholar
  7. 7.
    Wu T, Werner H-J, Manthe U (2004) Science 306:2227CrossRefGoogle Scholar
  8. 8.
    Yang M, Lee S-Y, Zhang DH (2007) J Chem Phys 126:064303CrossRefGoogle Scholar
  9. 9.
    Schiffel G, Manthe U (2010) J Chem Phys 132:084103CrossRefGoogle Scholar
  10. 10.
    Liu R, Xiong H, Yang M (2012) J Chem Phys 137:174113CrossRefGoogle Scholar
  11. 11.
    Liu R, Yang M, Czako G, Bowman JM, Li J, Guo H (2012) J Chem Phys Lett 3:3776CrossRefGoogle Scholar
  12. 12.
    Meng F, Yan W, Wang D (2012) Phys Chem Chem Phys 14:13656CrossRefGoogle Scholar
  13. 13.
    Palma J, Manthe U (2012) J Chem Phys 137:044306CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Zhou Y, Zhang DH, Czako G, Bowman JM (2012) J Chem Phys Lett 3:3416CrossRefGoogle Scholar
  15. 15.
    Song H, Lee S-Y, Yang M, Lu Y (2013) J Chem Phys 139:154310CrossRefGoogle Scholar
  16. 16.
    Wang D, Czakó G (2013) J Phys Chem A 117:7124CrossRefGoogle Scholar
  17. 17.
    Ben Bouchrit R, Jorfi M, Ben Abdallah D, Jaidane N, González M, Bussery-Honvault B, Honvault P (2014) J Chem Phys 140:244315CrossRefGoogle Scholar
  18. 18.
    Liu R, Wang F, Jiang B, Czakó G, Yang M, Liu K, Guo H (2014) J Chem Phys 141:074310CrossRefGoogle Scholar
  19. 19.
    Song H, Li J, Jiang B, Yang M, Lu Y, Guo H (2014) J Chem Phys 140:084307CrossRefGoogle Scholar
  20. 20.
    Welsch R, Manthe U (2014) J Chem Phys 141:051102CrossRefGoogle Scholar
  21. 21.
    Wang Y, Li J, Chen L, Lu Y, Yang M, Guo H (2015) J Chem Phys 143:154307CrossRefGoogle Scholar
  22. 22.
    Welsch R, Manthe U (2015) J Phys Chem Lett 6:338CrossRefGoogle Scholar
  23. 23.
    Qi J, Song H, Yang M, Palma J, Manthe U, Guo H (2016) J Chem Phys 144:171101CrossRefGoogle Scholar
  24. 24.
    Song H, Lu Y, Li J, Yang M, Guo H (2016) J Chem Phys 144:164303CrossRefGoogle Scholar
  25. 25.
    Wang Y, Song H, Szabó I, Czakó G, Guo H, Yang M (2016) J Phys Chem Lett 7:3322CrossRefGoogle Scholar
  26. 26.
    Ogg RA Jr (1934) J Am Chem Soc 56:526CrossRefGoogle Scholar
  27. 27.
    Williams RR Jr, Ogg RA Jr (1947) J Chem Phys 15:696CrossRefGoogle Scholar
  28. 28.
    Farren J, Gilbert JR, Linnett JW, Read IA (1964) Trans Faraday Soc 60:740CrossRefGoogle Scholar
  29. 29.
    Gac NA, Golden DM, Benson SW (1969) J Am Chem Soc 91:3091CrossRefGoogle Scholar
  30. 30.
    Donaldson DJ, Leone SR (1986) J Phys Chem 90:936CrossRefGoogle Scholar
  31. 31.
    Russell JJ, Seetula JA, Gutman D (1988) J Am Chem Soc 110:3092CrossRefGoogle Scholar
  32. 32.
    Nicovich JM, Van Dijk CA, Kreutter KD, Wine PH (1991) J Phys Chem 95:9890CrossRefGoogle Scholar
  33. 33.
    Seakins PW, Pilling MJ, Niiranen JT, Gutman D, Krasnoperov LN (1992) J Phys Chem 96:9847CrossRefGoogle Scholar
  34. 34.
    Benson SW, Dobis O (1998) J Phys Chem A 102:5175CrossRefGoogle Scholar
  35. 35.
    Krasnoperov LN, Mehta K (1999) J Phys Chem A 103:8008CrossRefGoogle Scholar
  36. 36.
    Guha S, Francisco JS (2001) J Mol Struc: THEOCHEM 573:171CrossRefGoogle Scholar
  37. 37.
    Seetula JA (2002) Phys Chem Chem Phys 4:455CrossRefGoogle Scholar
  38. 38.
    Sheng L, Li Z-S, Liu J-Y, Sun C-C (2003) J Chem Phys 119:10585CrossRefGoogle Scholar
  39. 39.
    Krasnoperov LN, Peng J, Marshall P (2006) J Phys Chem A 110:3110CrossRefGoogle Scholar
  40. 40.
    Ree J (2013) Bull Korean Chem Soc 34:2473CrossRefGoogle Scholar
  41. 41.
    Eskola AJ, Timonen RS, Marshall P, Chesnokov EN, Krasnoperov LN (2008) J Phys Chem A 112:7391CrossRefGoogle Scholar
  42. 42.
    McMillen DF, Golden DM (1982) Annu Rev Phys Chem 33:493. doi: 10.1146/annurev.pc.33.100182.002425 CrossRefGoogle Scholar
  43. 43.
    Anderson JG, Toohey DW, Brune WH (1991) Science 251:39CrossRefGoogle Scholar
  44. 44.
    Smith IWM, Zellner R (1973) J Chem Soc Faraday Trans 2(69):1617CrossRefGoogle Scholar
  45. 45.
    Baulch DL, Drysdale DD (1974) Combust Flame 23:215CrossRefGoogle Scholar
  46. 46.
    Perry RA, Atkinson R, Pitts JN (1977) J Chem Phys 67:5577CrossRefGoogle Scholar
  47. 47.
    Patrick R, Barker JR, Golden DM (1984) J Phys Chem 88:128CrossRefGoogle Scholar
  48. 48.
    Czakó G (2013) J Chem Phys 138:134301CrossRefGoogle Scholar
  49. 49.
    Chen Y, Rauk A, Tschuikow-Roux E (1991) J Phys Chem 95:9900CrossRefGoogle Scholar
  50. 50.
    Yu H-G, Nyman G (2001) J Phys Chem A 105:2240CrossRefGoogle Scholar
  51. 51.
    Espinosa-García J (2002) J Chem Phys 117:2076CrossRefGoogle Scholar
  52. 52.
    Chen Y, Tschuikow-Roux E, Rauk A (1991) J Phys Chem 95:9832CrossRefGoogle Scholar
  53. 53.
    Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99CrossRefGoogle Scholar
  54. 54.
    Chen L, Shao K, Chen J, Yang M, Zhang DH (2016) J Chem Phys 144:194309CrossRefGoogle Scholar
  55. 55.
    Palma J, Clary DC (2000) J Chem Phys 112:1859CrossRefGoogle Scholar
  56. 56.
    Zare RN (1988) Angular Momentum. Wiley, New YorkGoogle Scholar
  57. 57.
    Colbert DT, Miller WH (1992) J Chem Phys 96:1982CrossRefGoogle Scholar
  58. 58.
    Feit MD, Fleck JA Jr, Steiger A (1982) J Comp Phys 47:412CrossRefGoogle Scholar
  59. 59.
    Bowman JM (1991) J Phys Chem 95:4960CrossRefGoogle Scholar
  60. 60.
    Gray SK, Goldfield EM, Schatz GC, Balint-Kurti GG (1999) Phys Chem Chem Phys 1:1141CrossRefGoogle Scholar
  61. 61.
    Hase WL, Duchovic RJ, Hu X, Komornicki A, Lim KF, Lu D-H, Peslherbe GH, Swamy KN, Linde SRV, Varandas A, Wang H, Wolf RJ (1996) Quantum Chem Program Exch Bull 16:671Google Scholar
  62. 62.
    Jiang B, Guo H (2013) J Chem Phys 138:234104CrossRefGoogle Scholar
  63. 63.
    Polanyi JC (1972) Acc Chem Res 5:161CrossRefGoogle Scholar
  64. 64.
    Jiang B, Guo H (2013) J Am Chem Soc 135:15251CrossRefGoogle Scholar
  65. 65.
    Jiang B, Guo H (2014) J Chin Chem Soc 61:847CrossRefGoogle Scholar
  66. 66.
    Guo H, Jiang B (2014) Acc Chem Res 47:3679CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yan Wang
    • 1
    • 2
  • Leilei Ping
    • 2
    • 3
  • Hongwei Song
    • 2
  • Minghui Yang
    • 2
  1. 1.School of Chemical and Environmental EngineeringHubei University for NationalitiesEnshiChina
  2. 2.Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanChina
  3. 3.College of Physical Science and TechnologyHuazhong Normal UniversityWuhanChina

Personalised recommendations