Skip to main content
Log in

Theoretical investigation of water-gas shift reaction catalyzed by water-soluble Rh(III)–EDTA complex

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We systematically investigate the mechanisms of water-gas shift reaction (WGSR) on [Rh(EDTA)CO] complex on the basis of density functional theory calculations. Two different reaction pathways have been considered: One is the synthesis of HCOOH, and the other is the direct formation of H2 from H2O and CO. The former offers new insights into the fundamental direct mechanism for WGSR. In this study, we combine with the energetic span model to study the catalytic activity of different active sites and two different reaction pathways. Our calculation results indicate that the formation of HCOOH mechanism is the energetically favorable pathway for the water-gas shift reaction on [Rh(EDTA)CO] catalyst. Moreover, the Oc site acts as the most active site for the formation of HCOOH due to the highest value of TOF. NPA charges are calculated to shed further light on the properties leading up to the formation of HCOOH. Our work will be useful for developing the WGSR mechanism and designing better catalysts for WGSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Navarro RM, Pena MA, Fierro JLG (2007) Chem Rev 107:3952–3991

    Article  CAS  Google Scholar 

  2. Hao Y, Miharylov M, Ivanova E, Hadjiivanov K, Knozinger H, Gates BC (2009) J Catal 261:137–149

    Article  CAS  Google Scholar 

  3. Spencer MS (1995) Catal Lett 32:9–13

    Article  CAS  Google Scholar 

  4. Pulleri JK, Ting SW, Lam FLY, Hu C, Chan KY (2012) AIChE 2012 annual meeting, conference proceedings. American Institute of Chemical Engineers, New York, p 510e

  5. Johnson TC, Morris DJ, Wills M (2010) Chem Soc Rev 39:81–88

    Article  CAS  Google Scholar 

  6. Joo F (2008) ChemSusChem 1:805–808

    Article  CAS  Google Scholar 

  7. Enthaler S (2008) ChemSusChem 1:801–804

    Article  CAS  Google Scholar 

  8. Grabow LC, Mavrikakis M (2011) ACS Catal 1:365–384

    Article  CAS  Google Scholar 

  9. Morooka S, Matubayasi N, Nakahara M (2008) J Phys Chem A 112:6950–6959

    Article  CAS  Google Scholar 

  10. Rozenberg M, Loewenschuss A, Nielsen CJ (2015) J Phys Chem A 119:8497–8502

    Article  CAS  Google Scholar 

  11. Avdeev V, Parmon VN (2011) J Phys Chem C 115:21755–21762

    Article  CAS  Google Scholar 

  12. Chaoquan Hu, Jk Pulleri, Ting SW, Chan KY (2014) Int J Hydrogen Energy 39:381–390

    Article  Google Scholar 

  13. Grasemann M, Laurenczy G (2012) Energy Environ Sci 5:8171–8181

    Article  CAS  Google Scholar 

  14. Chaoquan Hu, Ting SW, Chan KY, Huang W (2012) Int J Hydrogen Energy 37:5956–5965

    Google Scholar 

  15. Mars P, Scholten JJF, Zwietering P (1963) Adv Catal 14:35–113

    CAS  Google Scholar 

  16. Trillo JM, Munuera G, Criado JM (1972) Catal Rev 7:51–86

    Article  CAS  Google Scholar 

  17. Jessop PG, Ikariya T, Noyori R (1995) Chem Rev 95:259–272

    Article  CAS  Google Scholar 

  18. Zhang JZ, Li Z, Wang H, Wang CY (1996) J Mol Catal A 112:9–14

    Article  CAS  Google Scholar 

  19. Gassner F, Leitner W (1993) J Chem Soc Chem Commun 19:1465–1466

    Article  Google Scholar 

  20. Bersworth CC (1954) Framingham, Mass

  21. Suchecki SA, Mathews B, Augustyniak AW, Kumazawa H (2014) Ind Eng Chem Rec 53:14234–14240

    Article  CAS  Google Scholar 

  22. Thomas SA, Gaillard JF (2015) J Phys Chem A 119:2878–2884

    Article  CAS  Google Scholar 

  23. Garapati S, Burns CS, Rodriguez AA (2014) J Phys Chem B 118:12960–12964

    Article  CAS  Google Scholar 

  24. Coskuner O, Jarvis EAA (2008) J Phys Chem A 112:2628–2633

    Article  CAS  Google Scholar 

  25. Brien LC, Root HB, Wei CC, Jensen D, Shabestary N, Meo CD, Eder DJ (2015) Chem Educ 92:1547–1551

    Article  Google Scholar 

  26. Dwyer FP, Garvan FL (1960) J Am Chem Soc 82:4823–4826

    Article  CAS  Google Scholar 

  27. Herrmann WA (1990) Chem Ber 123:1963–1970

    Article  CAS  Google Scholar 

  28. Gaussian 09, Revision A. 1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2010) Gaussian Inc, Wallingford

  29. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937–2941

    Article  CAS  Google Scholar 

  32. Häussermann U, Dolg M, Stoll H, Preuss H, Schwerdtfeger P, Pitzer RM (1993) Mol Phys 78:1211–1224

    Article  Google Scholar 

  33. Kuchle W, Dolg M, Stoll H, Preuss H (1994) J Chem Phys 100:7535–7542

    Article  Google Scholar 

  34. Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P (1996) J Chem Phys 105:1052–1059

    Article  CAS  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  36. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  37. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  38. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  39. Kozuch S, Shaik S (2010) Acc Chem Res 44:101–110

    Article  Google Scholar 

  40. Kozuch S, Shaik SA (2006) J Am Chem Soc 128:3355–3365

    Article  CAS  Google Scholar 

  41. Kozuch S, Shaik S (2008) J Phys Chem A 112:6032–6041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant No. 2013145 and Grant No. 2015537), Shanxi Normal University (SD2013CXCY-65, 105088), Teaching Reform Project of Shanxi Normal University (SD2013JGXM-51) and Graduate student innovation project (2016SY037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Ethics declarations

Conflict of interest

The researcher claims no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Guo, L., Liu, N. et al. Theoretical investigation of water-gas shift reaction catalyzed by water-soluble Rh(III)–EDTA complex. Theor Chem Acc 136, 53 (2017). https://doi.org/10.1007/s00214-017-2080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2080-4

Keywords

Navigation