Skip to main content
Log in

The catalytic performance of Cu n Au (n = 3–12) clusters for preferential oxidation of CO in hydrogen-rich stream

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The CO preferential oxidation (CO-PROX) reaction is the simplest and most cost-effective method to purify reformed H2. We investigated the catalytic performance of Cu n Au (n = 3–12) clusters for CO-PROX in excess hydrogen using density functional theory calculations. The exploration on catalytic mechanism of CO-PROX reaction showed the formation of hydroxyl and atomic oxygen synchronously was the element step we found for the first time, and the mechanism also via the main intermediates of carboxylic. Our results showed that Cu n Au clusters reveal extremely activity for the CO-PROX reaction. In particular, Cu8Au regards as the best surface for CO-PROX reaction because of the lower activation barrier compared with other Cu n Au clusters. To explain the high catalytic activity of Cu n Au clusters, the nature of the interaction between adsorbate and substrate was also analyzed by detailed electronic projected density of states. Our studies provide insight into the Cu–Au catalysts, which may be helpful in developing efficient catalysts for important industrial reaction of CO-PROX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935–938

    Article  CAS  Google Scholar 

  2. Ko EY, Park ED, Lee HC, Lee D, Kim S (2007) Angew Chem Int Ed 46:734–737

    Article  CAS  Google Scholar 

  3. Avgouropoulos G, Ioannides T, Papadopoulou Ch, Batista J, Hocevar S, Matralis H (2002) Catal Today 75:157–167

    Article  CAS  Google Scholar 

  4. Ko EY, Park ED, Seo KW, Lee HC, Lee D, Kim S (2006) Catal Today 116:377–383

    Article  CAS  Google Scholar 

  5. Jung CR, Kundu A, Nam SW, Lee HI (2008) Appl Catal B Environ 84:426–432

    Article  CAS  Google Scholar 

  6. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  7. Haruta M (1997) Catal Today 36:153–166

    Article  CAS  Google Scholar 

  8. Schubert MM, Plzak V, Garche J, Behm RJ (2001) Catal Lett 76:143–150

    Article  CAS  Google Scholar 

  9. Goerke O, Pfeifer P, Schubert K (2004) Appl Catal A Gen 263:11–18

    Article  CAS  Google Scholar 

  10. Deng W, De Jesus J, Saltsburg H, Flytzani-Stephanopoulos M (2005) Appl Catal A Gen 291:126–135

    Article  CAS  Google Scholar 

  11. Luengnaruemitchai A, Osuwan S, Gulari E (2004) Int J Hydrogen Energy 29:429–435

    Article  CAS  Google Scholar 

  12. Arena F, Famulari P, Trunfio G, Bonura G, Frusteri F, Spadaro L (2006) Appl Catal B Environ 66:81–91

    Article  CAS  Google Scholar 

  13. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  14. Mozer TS, Dziubal DA, Vieira CTP, Passos FB (2009) J Power Sources 187:209–215

    Article  CAS  Google Scholar 

  15. Zhu B, Guo Q, Huang X, Wang S, Zhang S, Wu S, Huang W (2006) J Mol Catal A Chem 249:211–217

    Article  CAS  Google Scholar 

  16. Li X, Fang SSS, Teo J, Foo YL, Borgna A, Lin M, Zhong Z (2012) ACS Catal 2:360–369

    Article  CAS  Google Scholar 

  17. Kim HY, Lee HM, Henkelman G (2012) J Am Chem Soc 134:1560–1570

    Article  CAS  Google Scholar 

  18. Zhang L, Kim HY, Henkelman G (2013) J Phys Chem Lett 4:2943–2947

    Article  CAS  Google Scholar 

  19. Ren NN, Guo L, Dong XN, Wen CX (2015) Transit Met Chem 40:207–216

    Article  CAS  Google Scholar 

  20. Wang LM, Pal R, Huang W, Zeng XC, Wang LS (2010) J Chem Phys 132:114306

    Article  Google Scholar 

  21. Torres MB, Balbás LC (2007) Eur Phys J D 43:217–220

    Article  CAS  Google Scholar 

  22. Wu X, Cai W, Shao X (2009) J Comput Chem 30:1992–2000

    Article  CAS  Google Scholar 

  23. Elizabeth F, Fanor M, Francesc I (2012) Surf Sci 606:1010–1018

    Article  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev V, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Wallingford, Gaussian

    Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  26. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  27. Peng CY, Ayala PY, Schleg HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  28. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure: IV constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  29. Ho J, Ervin KM, Lineberger WC (1990) J Chem Phys 93:6987–7002

    Article  CAS  Google Scholar 

  30. Simard B, Hackett PA (1990) J Mol Spectrosc 142:310–318

    Article  CAS  Google Scholar 

  31. Morse MD (1986) Chem Rev 86:1049–1109

    Article  CAS  Google Scholar 

  32. Massobrio C, Pasquarello A, Car R (1995) Chem Phys Lett 238:215–221

    Article  Google Scholar 

  33. Bishea GA, Pinegar JC, Morse MD (1991) J Chem Phys 95:5630–5645

    Article  CAS  Google Scholar 

  34. Yang M, Jackson KA, Koehler C, Frauenheim T, Jellinek J (2006) J Chem Phys 124(1–6):024308

    Article  Google Scholar 

  35. Cao Z, Wang Y, Zhu J, Wu W, Zhang Q (2002) J Phys Chem B 106:9649–9654

    Article  CAS  Google Scholar 

  36. Yang M, Yang F, Jackson KA, Jellinek J (2010) J Chem Phys 132(1–6):064306

    Article  CAS  Google Scholar 

  37. Nilekar AU, Alayoglu S, Eichhorn B, Mavrikakis M (2010) J Am Chem Soc 132:7418–7428

    Article  CAS  Google Scholar 

  38. Tanaka K, Shou M, He H, Shi XY, Zhang XL (2009) J Phys Chem C 113:12427–12433

    Article  CAS  Google Scholar 

  39. Caputo T, Lisi L, Pirone R, Russo G (2008) Appl Catal A Gen 348:42–53

    Article  CAS  Google Scholar 

  40. Tanaka K, He H, Shou M, Shi XY (2011) Catal Today 175:467–470

    Article  CAS  Google Scholar 

  41. Hernández JA, Gómez SA, Zepeda TA, Fierro-González JC, Fuentes GA (2015) ACS Catal 5:4003–4012

    Article  Google Scholar 

  42. Hussain A (2013) J Phys Chem C 117:5084–5094

    Article  CAS  Google Scholar 

  43. Liu K, Wang AQ, Zhang WS, Wang JH, Huang YQ, Wang XD, Shen JY, Zhang T (2011) Ind Eng Chem Res 50:758–766

    Article  CAS  Google Scholar 

  44. Hussain A, Gracia J, Niemantsverdriet JW, Nieuwenhuys BE (2011) Molecules 16:9582–9599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant Nos. 105088, 2015537, WL2015CXCY-SJ-01) and Shanxi Normal University (SD2015CXXM-80, WL2015CXCY-YJ-18) and Teaching Reform Project of Shanxi Normal University (WL2015JGXM-YJ-13). Graduate student education innovation project of Shanxi province (2016SY037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Guo, L., Li, W. et al. The catalytic performance of Cu n Au (n = 3–12) clusters for preferential oxidation of CO in hydrogen-rich stream. Theor Chem Acc 136, 33 (2017). https://doi.org/10.1007/s00214-017-2062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2062-6

Keywords

Navigation