Skip to main content
Log in

Why choose 9-cis retinal for therapy of congenital stationary night blindness caused by G90D rhodopsin?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The thermal stability and thermal activity of four G90D rhodopsin isomer models were investigated by QM/MM method. The results implied that one pathological mechanism of congenital stationary night blindness caused by G90D mutation is the low thermal isomerization barrier of G90D rhodopsin binding with 11-cis retinal, not just the lacking of natural salt bridge. 9-cis retinal binding with G90D rhodopsin opsin could increase the thermal stability and minimize the thermal isomerization of G90D rhodopsin mutant. Therefore, 9-cis retinal was suggested to be used in potential treatments for congenital stationary night blindness caused by G90D mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zeitz C (2007) Molecular genetics and protein function involved in nocturnal vision. Expert Rev Ophthalmol 2(3):467–485

    Article  CAS  Google Scholar 

  2. Zeitz C, Robson AG, Audo I (2015) Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Pro Retin Eye Res 45:58–110

    Article  Google Scholar 

  3. Hubbell WL, Bownds MD (1979) Visual transduction in vertebrate photoreceptors. Annu Rev Neurosci 2:17–34

    Article  CAS  Google Scholar 

  4. Filipek S, Stenkamp RE, Teller DC, Palczewski K (2003) G protein-coupled receptor rhodopsin: a prospectus. Annu Rev Physiol 65:851–879

    Article  CAS  Google Scholar 

  5. Rao VR, Cohen GB, Oprian DD (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367(6464):639–642

    Article  CAS  Google Scholar 

  6. al-Jandal N, Farrar GJ, Kiang AS, Humphries MM, Bannon N, Findlay JBC, Humphries P, Kenna PF (1999) A novel mutation without the rhodopsin gene (Thr-94-Ile) causing autosomal dominant congenital stationary night blindness. Hum Mutat 13(1):75–81

    Article  CAS  Google Scholar 

  7. Dryja TP, Berson EL, Rao VR, Oprian DD (1993) Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet 4(3):280–283

    Article  CAS  Google Scholar 

  8. Zeitz C, Gross AK, Leifert D, Kloeckener-Gruissem B, McAlear SD, Lemke J, Neidhardt J, Berger W (2008) Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB. Invest Ophthalmol Vis Sci 49(9):4105–4114

    Article  Google Scholar 

  9. Gross AK, Rao VR, Oprian DD (2003) Characterization of rhodopsin congenital night blindness mutant t941. Biochemistry 42(7):2009–2015

    Article  CAS  Google Scholar 

  10. Gross AK, Xie GF, Oprian DD (2003) Slow binding of retinal to rhodopsin mutants G90D and T94D. Biochemistry 42(7):2002–2008

    Article  CAS  Google Scholar 

  11. Rim J, Oprian DD (1995) Constitutive activation of opsin—interaction of mutants with rhodopsin kinase and arrestin. Biochemistry 34(37):11938–11945

    Article  CAS  Google Scholar 

  12. Mahalingam M, Martinez-Mayorga K, Brown MF, Vogel R (2008) Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci USA 105(46):17795–17800

    Article  CAS  Google Scholar 

  13. Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT, Tesmer JJG, Veprintsev D, Deupi X, Gurevich VV, Schertler GFX, Standfuss J (2013) Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO J 14(6):520–526

    Article  CAS  Google Scholar 

  14. Toledo D, Ramon E, Aguila M, Cordomi A, Perez JJ, Mendes HF, Cheetham ME, Garriga P (2011) Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin. J Biol Chem 286(46):39993–40001

    Article  CAS  Google Scholar 

  15. Barlow HB (1988) Vision—the thermal limit to seeing. Nature 334(6180):296–297

    Article  CAS  Google Scholar 

  16. Barlow RB, Birge RR, Kaplan E, Tallent JR (1993) On the molecular-origin of photoreceptor noise. Nature 366(6450):64–66

    Article  CAS  Google Scholar 

  17. Schick GA, Cooper TM, Holloway RA, Murray LP, Birge RR (1987) Energy-storage in the primary photochemical events of rhodopsin and isorhodopsin. Biochemistry 26(9):2556–2562

    Article  CAS  Google Scholar 

  18. Schoenlein RW, Peteanu LA, Wang Q, Mathies RA, Shank CV (1993) Femtosecond dynamics of cis-trans isomerization in a visual pigment analog—isorhodopsin. J Phys Chem 97(46):12087–12092

    Article  CAS  Google Scholar 

  19. Ramamurthy V, Liu RSH (1975) 7-Cis isomers of retinal via 7-cis- and 7,9-dicis-beta-C18-tetraene ketones: new geometric isomers of vitamin-A and carotenoids-I. Tetrahedron 31(3):201–206

    Article  CAS  Google Scholar 

  20. Degrip WJ, Liu RSH, Ramamurthy V, Asato A (1976) Rhodopsin analogs from highly hindered 7-cis isomers of retinal. Nature 262(5567):416–418

    Article  CAS  Google Scholar 

  21. Nakamichi H, Okada T (2007) X-ray crystallographic analysis of 9-cis-rhodopsin, a model analogue visual pigment. Photochem Photobiol 83(2):232–235

    Article  CAS  Google Scholar 

  22. Sekharan S, Morokuma K (2011) Why 11-cis-retinal? Why not 7-cis-, 9-cis-, or 13-cis-retinal in the eye? J Am Chem Soc 133(47):19052–19055

    Article  CAS  Google Scholar 

  23. Sekharan S, Sugihara M, Weingart O, Okada T, Buss V (2007) Protein assistance in the photoisomerization of rhodopsin and 9-cis-rhodopsin-insights from experiment and theory. J Am Chem Soc 129(5):1052–1054

    Article  CAS  Google Scholar 

  24. Maeda A, Shichida Y, Yoshizawa T (1979) Formation of 7-cis- and 13-cis-retinal pigments by irradiating squid rhodopsin. Biochemistry 18(8):1449–1453

    Article  CAS  Google Scholar 

  25. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  26. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions—dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol 103(2):227–249

    Article  CAS  Google Scholar 

  27. Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ (2006) Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J Chem Theory Comput 2(3):815–826

    Article  CAS  Google Scholar 

  28. Pal R, Sekharan S, Batista VS (2013) Spectral tuning in halorhodopsin: the chloride pump photoreceptor. J Am Chem Soc 135(26):9624–9627

    Article  CAS  Google Scholar 

  29. Mooney V, Sekharan S, Liu J, Guo Y, Batista VS, Yan ECY (2015) Kinetics of thermal activation of an ultraviolet cone pigment. J Am Chem Soc 137(1):307–313

    Article  CAS  Google Scholar 

  30. Sekharan S, Mooney VL, Rivalta I, Kazmi MA, Neitz M, Neitz J, Sakmar TP, Yan ECY, Batista VS (2013) Spectral tuning of ultraviolet cone pigments: an interhelical lock mechanism. J Am Chem Soc 135(51):19064–19067

    Article  CAS  Google Scholar 

  31. Zvyaga TA, Fahmy K, Siebert F, Sakmar TP (1996) Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study. Biochemistry 35(23):7536–7545

    Article  CAS  Google Scholar 

  32. Vreven T, Morokuma K, Farkas O, Schlegel HB, Frisch MJ (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J Chem Theory Comput 24(6):760–769

    CAS  Google Scholar 

  33. Lee CT, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  34. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  35. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

    Article  CAS  Google Scholar 

  36. Altun A, Yokoyama S, Morokuma K (2008) Spectral tuning in visual pigments: an ONIOM(QM : MM) study on bovine rhodopsin and its mutants. J Phys Chem B 112(22):6814–6827

    Article  CAS  Google Scholar 

  37. Xie P, Zhou P, Alsaedi A, Zhang Y (2017) pH-dependent absorption spectra of rhodopsin mutant E113Q: on the role of counterions and protein. Spectrochim Acta, Part A 174:25–31

    Article  CAS  Google Scholar 

  38. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian Inc.: Wallingford, CT, USA

  39. Dizhoor AM, Woodruff ML, Olshevskaya EV, Cilluffo MC, Cornwall MC, Sieving PA, Fain GL (2008) Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin. J Neurosci 28(45):11662–11672

    Article  CAS  Google Scholar 

  40. Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M (1995) Dark-light: model for nightblindness from the human rhodopsin Gly-90-Asp mutation. Proc Natl Acad Sci USA 92(3):880–884

    Article  CAS  Google Scholar 

  41. Liu RSH, Asato AE (1985) The primary process of vision and the structure of bathorhodopsin: a mechanism for photoisomerization of polyenes. Proc Natl Acad Sci USA 82(2):259–263

    Article  CAS  Google Scholar 

  42. Liu RSH, Hammond GS (2000) The case of medium-dependent dual mechanisms for photoisomerization: one-bond-flip and Hula-Twist. Proc Natl Acad Sci USA 97(21):11153–11158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the National Natural Science Foundation of China (21403225 and 21103167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Zhang, Y. Why choose 9-cis retinal for therapy of congenital stationary night blindness caused by G90D rhodopsin?. Theor Chem Acc 136, 12 (2017). https://doi.org/10.1007/s00214-016-2039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2039-x

Keywords

Navigation