Skip to main content
Log in

Mechanistic aspects of the activation of C–H bond in C2H6 by Th atom: bonding analysis and reaction coefficients

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations have been performed to investigate the reactivity of Th atom toward ethane C–H bond activation. To get the mechanism of the C–H bond activation by C2H6, a systematic DFT computational study is implemented. Comprehensive description of the reaction mechanism in the consideration of the possible spin states as well as analysis of the electronic factors offers detail information of C–H bond activation. The results indicate that the final reaction products of C–H breakage are the ThC2H3 and ThC2H2. The nature of the bonding evolution along the reaction pathways was explored using distinct analysis method including electron localization function, atoms in molecules and natural bond orbital. Reaction rate constants were computed between 298 and 1000 K at levels of variational transition state theory for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Di Santo E, Santos M (2011) J Am Chem Soc 133:1955–1970

    Article  Google Scholar 

  2. Santos M, Marc-alo J, Pires de Matos A, Gibson JK, Haire RG (2002) J Phys Chem A 106:7190–7194

    Article  CAS  Google Scholar 

  3. Santos M, Marc-alo J, Leal JP, Pires de Matos A, Gibson JK, Haire RG (2003) Int J Mass Spectrom 228:457–465

    Article  CAS  Google Scholar 

  4. Gibson JK, Haire RG, Santos M, Marc-alo J, Pires de Matos A (2005) J Phys Chem A 109:2768–2781

    Article  CAS  Google Scholar 

  5. Gibson JK, Haire RG, Marc-alo J, Santos M, Pires de Matos A (2005) J Nucl Mater 344:24–29

    Article  CAS  Google Scholar 

  6. Santos M, Pires de Matos A, Marc-alo J, Gibson JK, Haire RG, Tyagi R, Pitzer RM (2006) J Phys Chem A 110:5751–5759

    Article  CAS  Google Scholar 

  7. Gibson JK, Haire RG, Santos M, Pires de Matos A, Marc-alo J (2008) J Phys Chem A 112:11373–11381

    Article  CAS  Google Scholar 

  8. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom Rev 17:1–35

    Article  CAS  Google Scholar 

  9. Li P, Niu WX, Gao T, Wang HY (2014) J Mol Model 20:2466

    Article  CAS  Google Scholar 

  10. Niu WX, Zhang H, Li P, Gao T (2015) Int J Quantum Chem 115:6–18

    Article  CAS  Google Scholar 

  11. Li P, Niu WX, Gao T, Wang HY (2014) ChemPhysChem 15:3078–3088

    Article  CAS  Google Scholar 

  12. Li P, Niu WX, Gao T, Wang HY (2014) Int J Quantum Chem 114:760–768

    Article  CAS  Google Scholar 

  13. Li P, Niu WX, Gao T (2015) J Radioanal Nucl Chem 304:489–499

    Article  CAS  Google Scholar 

  14. Li P, Niu WX, Gao T (2014) RSC Adv 4:29806–29817

    Article  CAS  Google Scholar 

  15. Li P, Niu WX, Tian XF, Gao T, Wang HY (2013) J Phys Chem A 117:3761–3770

    Article  CAS  Google Scholar 

  16. DeAlmeida KJ, Duarte HA (2010) Organometallics 29:3735–3745

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas C, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 (Revision A.02). Gaussian Inc, Wallingford

    Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  19. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1998) Matter Mater Phys 37:785–789

    Article  Google Scholar 

  21. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  22. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  25. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  26. Kuchle W, Dolg M, Stoll H, Preuss H (1996) J Chem Phys 100:7535–7542

    Article  Google Scholar 

  27. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  28. Blaudeau JP, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016–5021

    Article  CAS  Google Scholar 

  29. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  30. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  31. Savin A, Nesper R, Wengert S, Fassler TR (1997) Angew Chem Int Ed Engl 36:1808–1832

    Article  CAS  Google Scholar 

  32. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon, Oxford

    Google Scholar 

  33. Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  34. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  35. Canneaux S, Bohr F, Henon E (2014) J Comput Chem 35:82

    Article  CAS  Google Scholar 

  36. Carstensen HH, Dean AM (2009) J Phys Chem A 113:367

    Article  CAS  Google Scholar 

  37. Ng M, Mok DKW, Lee EPF, Dyke JM (2013) J Comput Chem 34:545

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful for the Center of High Performance Computing at the Physics Discipline of Sichuan University providing computer time. We thank all those people for asking the critical questions which help to form this article.

Funding

Project was supported by the National Natural Science Foundation of China (Grant Nos. 21371160 and 21401173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, P., Gao, T. et al. Mechanistic aspects of the activation of C–H bond in C2H6 by Th atom: bonding analysis and reaction coefficients. Theor Chem Acc 135, 266 (2016). https://doi.org/10.1007/s00214-016-2015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2015-5

Keywords

Navigation