Abstract
In order to understand the interaction between adenosine-5′-triphosphate (ATP) and guanidinium, as recently hypothesized in protein kinase type III inhibitors, a theoretical study has been carried out. First, the intrinsic interactions established between these two systems were studied using a model of ATP; thus, the interactions between a phosphate anion and differently substituted phenylguanidinium cations have been analysed. Then, considering the most stable complexes found with this simplified model, those formed between the phosphate groups of ATP and diaromatic guanidinium derivatives have been studied. All the calculations have been performed using ab initio MP2/6-311++G(d,p)//MP2/6-31+G(d,p) computational level utilizing the polarizable continuum model mimicking water solvation. Besides, only for ATP complexes the geometry optimization has been modified, and thus, DFT-D calculations with the ωB97XD functional were carried out. The Atoms in Molecules analysis of the electron density, natural bond orbital second-order orbital energies and electron density shift maps have been used to better understand the intermolecular interactions.
Similar content being viewed by others
References
Klebl B, Muller G, Hamacher M, Mannhold R, Kubinyi H, Folkers G (2011) Protein kinases as drug targets. Wiley, Hoboken
O’Hare T, Eide CA, Deininger MW (2008) Expert Opin Investig Drugs 17:865–878
Schenone S, Brullo C, Botta M (2010) Curr Med Chem 17:1220–1245
Diez-Cecilia E, Kelly B, Perez C, Zisterer DM, Nevin DK, Lloyd DG, Rozas I (2014) Eur J Med Chem 81:427–441
Iacob RE, Zhang J, Gray NS, Engen JR (2011) PLoS ONE 6:e15929
Khateb M, Ruimi N, Khamisie H, Najajreh Y, Mian A, Metodieva A, Ruthardt M, Mahajna J (2012) BMC Cancer 12:563
Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo GR, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS (2010) Nature 463:501–506
Li C, Ma N, Wang Y, Wang Y, Chen G (2014) J Phys Chem B 118:1273–1287
Yang LJ, Zou J, Xie HZ, Li LL, Wei YQ, Yang SY (2009) PLoS ONE 4:e8470
Bartlett S, Beddard GS, Jackson RM, Kayser V, Kilner C, Leach A, Nelson A, Oledzki PR, Parker P, Reid GD, Warriner SL (2005) J Am Chem Soc 127:11699–11708
Golubovskaya VM, Ho B, Zheng M, Magis A, Ostrov D, Cance WG (2013) Anticancer Agents Med Chem 13:546–554
Ubersax JA, Ferrell JE Jr (2007) Nat Rev Mol Cell Biol 8:530–541
Volkamer A, Eid S, Turk S, Jaeger S, Rippmann F, Fulle S (2015) J Chem Inf Model 55:538–549
Yusufaly TI, Li Y, Singh G, Olson WK (2014) J Chem Phys 141:165102
Kataev EA, Müller C, Kolesnikov GV, Khrustalev VN (2014) Eur J Org Chem 2014:2747–2753
Jin Y, Molt RW Jr, Waltho JP, Richards NG, Blackburn GM (2016) Angew Chem Int Ed Engl 55:3318–3322
Pereira CA, Alonso GD, Ivaldi S, Silber AM, Alves MJ, Torres HN, Flawia MM (2003) FEBS Lett 554:201–205
Andrews LD, Graham J, Snider MJ, Fraga D (2008) Comp Biochem Physiol B: Biochem Mol Biol 150:312–319
Ellington WR (2001) Annu Rev Physiol 63:289–325
Uda K, Fujimoto N, Akiyama Y, Mizuta K, Tanaka K, Ellington WR, Suzuki T (2006) Comp Biochem Physiol Part D Genomics Proteomics 1:209–218
Kato Y, Conn MM, Rebek J Jr (1994) J Am Chem Soc 116:3279–3284
Best MD, Tobey SL, Anslyn EV (2003) Coord Chem Rev 240:3–15
Schug KA, Lindner W (2005) Chem Rev 105:67–114
Blondeau P, Segura M, Perez-Fernandez R, de Mendoza J (2007) Chem Soc Rev 36:198–210
Rozas I, Kruger PE (2005) J Chem Theory Comput 1:1055–1062
Blanco F, Kelly B, Alkorta I, Rozas I, Elguero J (2011) Chem Phys Lett 511:129–134
Kelly B, Sánchez-Sanz G, Blanco F, Rozas I (2012) Comput Theor Chem 998:64–73
Rozas I, Sánchez-Sanz G, Alkorta I, Elguero J (2013) J Phys Org Chem 26:378–385
Blanco F, Kelly B, Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J, Rozas I (2013) J Phys Chem B 117:11608–11616
Marin-Luna M, Sanchez-Sanz G, O’Sullivan P, Rozas I (2014) J Phys Chem A 118:5540–5547
Møller C, Plesset MS (1934) Phys Rev 46:618–622
Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian Inc, Wallingford CT
Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926
Popelier PLA (2012) Quantum chemical topology in drug design. In: Banting L, Clark T (eds) RSC drug discovery series No. 20: drug design strategies: computational techniques and applications, vol 6. Royal Society of Chemistry, Great Britain, pp 120–163
Popelier PLA (2005) Quantum chemical topology: on bonds and potential. In: Wales DJ (ed) Intermolecular forces and clusters I, vol 115. Springer, Heidelberg, pp 1–56
Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford
Keith TA (2011) 11.10.16 edn., 2011, pp. TK Gristmill Software,(aim.tkgristmill.com)
Stockbridge RB, Wolfenden R (2009) J Biol Chem 284:22747–22757
O’Neil MJ (2006) The Merck index—an encyclopedia of chemicals, drugs, and biologicals. Whitehouse Station,WMerck and Co., Inc., New York
Calculator Plugins were used for structure property prediction and calculation, Marvin 6.0.3, 2013, ChemAxon http://www.chemaxon.com
Sanchez-Sanz G, Alkorta I, Elguero J (2011) Mol Phys 109:2543–2552
Sanchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) ChemPhysChem 13:496–503
Sanchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2014) Phys Chem Chem Phys 16:15900–15909
Bauzá A, Alkorta I, Frontera A, Elguero J (2013) J Chem Theory Comput 9:5201–5210
Alkorta I, Elguero J, Solimannejad M (2014) J Phys Chem A 118:947–953
Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) Comput Theor Chem 991:124–133
Matta CF, Arabi AA, Keith TA (2007) J Phys Chem A 111:8864–8872
Arabi AA, Matta CF (2009) J Phys Chem A 113:3360–3368
Arabi AA, Matta CF (2010) Energy richness of ATP in terms of atomic energies: a first step. In: Matta CF (ed) Quantum biochemistry: electronic structure and biological activity, vol 1, chap 15. Wiley-VCH, Weinheim, pp 473–498
Rozas I (2007) Phys Chem Chem Phys 9:2782–2790
Acknowledgements
Thanks are given to the School of Chemistry at Trinity College Dublin for postgraduate support (V.P.) and to the Irish Centre for High-End Computing (ICHEC) and the Trinity Centre for High-Performance Computing (TCHPC) for the provision of computational facilities. We are indebted to Dr. Goar Sánchez from the UCD School of Chemistry, for the AIM analysis and helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Trujillo, C., Previtali, V. & Rozas, I. A theoretical model of the interaction between phosphates in the ATP molecule and guanidinium systems. Theor Chem Acc 135, 260 (2016). https://doi.org/10.1007/s00214-016-2012-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-016-2012-8