Skip to main content
Log in

A theoretical model of the interaction between phosphates in the ATP molecule and guanidinium systems

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In order to understand the interaction between adenosine-5′-triphosphate (ATP) and guanidinium, as recently hypothesized in protein kinase type III inhibitors, a theoretical study has been carried out. First, the intrinsic interactions established between these two systems were studied using a model of ATP; thus, the interactions between a phosphate anion and differently substituted phenylguanidinium cations have been analysed. Then, considering the most stable complexes found with this simplified model, those formed between the phosphate groups of ATP and diaromatic guanidinium derivatives have been studied. All the calculations have been performed using ab initio MP2/6-311++G(d,p)//MP2/6-31+G(d,p) computational level utilizing the polarizable continuum model mimicking water solvation. Besides, only for ATP complexes the geometry optimization has been modified, and thus, DFT-D calculations with the ωB97XD functional were carried out. The Atoms in Molecules analysis of the electron density, natural bond orbital second-order orbital energies and electron density shift maps have been used to better understand the intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klebl B, Muller G, Hamacher M, Mannhold R, Kubinyi H, Folkers G (2011) Protein kinases as drug targets. Wiley, Hoboken

    Book  Google Scholar 

  2. O’Hare T, Eide CA, Deininger MW (2008) Expert Opin Investig Drugs 17:865–878

    Article  Google Scholar 

  3. Schenone S, Brullo C, Botta M (2010) Curr Med Chem 17:1220–1245

    Article  CAS  Google Scholar 

  4. Diez-Cecilia E, Kelly B, Perez C, Zisterer DM, Nevin DK, Lloyd DG, Rozas I (2014) Eur J Med Chem 81:427–441

    Article  CAS  Google Scholar 

  5. Iacob RE, Zhang J, Gray NS, Engen JR (2011) PLoS ONE 6:e15929

    Article  CAS  Google Scholar 

  6. Khateb M, Ruimi N, Khamisie H, Najajreh Y, Mian A, Metodieva A, Ruthardt M, Mahajna J (2012) BMC Cancer 12:563

    Article  CAS  Google Scholar 

  7. Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo GR, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS (2010) Nature 463:501–506

    Article  CAS  Google Scholar 

  8. Li C, Ma N, Wang Y, Wang Y, Chen G (2014) J Phys Chem B 118:1273–1287

    Article  CAS  Google Scholar 

  9. Yang LJ, Zou J, Xie HZ, Li LL, Wei YQ, Yang SY (2009) PLoS ONE 4:e8470

    Article  Google Scholar 

  10. Bartlett S, Beddard GS, Jackson RM, Kayser V, Kilner C, Leach A, Nelson A, Oledzki PR, Parker P, Reid GD, Warriner SL (2005) J Am Chem Soc 127:11699–11708

    Article  CAS  Google Scholar 

  11. Golubovskaya VM, Ho B, Zheng M, Magis A, Ostrov D, Cance WG (2013) Anticancer Agents Med Chem 13:546–554

    Article  CAS  Google Scholar 

  12. Ubersax JA, Ferrell JE Jr (2007) Nat Rev Mol Cell Biol 8:530–541

    Article  CAS  Google Scholar 

  13. Volkamer A, Eid S, Turk S, Jaeger S, Rippmann F, Fulle S (2015) J Chem Inf Model 55:538–549

    Article  Google Scholar 

  14. Yusufaly TI, Li Y, Singh G, Olson WK (2014) J Chem Phys 141:165102

    Article  Google Scholar 

  15. Kataev EA, Müller C, Kolesnikov GV, Khrustalev VN (2014) Eur J Org Chem 2014:2747–2753

    Article  CAS  Google Scholar 

  16. Jin Y, Molt RW Jr, Waltho JP, Richards NG, Blackburn GM (2016) Angew Chem Int Ed Engl 55:3318–3322

    Article  CAS  Google Scholar 

  17. Pereira CA, Alonso GD, Ivaldi S, Silber AM, Alves MJ, Torres HN, Flawia MM (2003) FEBS Lett 554:201–205

    Article  CAS  Google Scholar 

  18. Andrews LD, Graham J, Snider MJ, Fraga D (2008) Comp Biochem Physiol B: Biochem Mol Biol 150:312–319

    Article  Google Scholar 

  19. Ellington WR (2001) Annu Rev Physiol 63:289–325

    Article  CAS  Google Scholar 

  20. Uda K, Fujimoto N, Akiyama Y, Mizuta K, Tanaka K, Ellington WR, Suzuki T (2006) Comp Biochem Physiol Part D Genomics Proteomics 1:209–218

    Article  Google Scholar 

  21. Kato Y, Conn MM, Rebek J Jr (1994) J Am Chem Soc 116:3279–3284

    Article  CAS  Google Scholar 

  22. Best MD, Tobey SL, Anslyn EV (2003) Coord Chem Rev 240:3–15

    Article  CAS  Google Scholar 

  23. Schug KA, Lindner W (2005) Chem Rev 105:67–114

    Article  CAS  Google Scholar 

  24. Blondeau P, Segura M, Perez-Fernandez R, de Mendoza J (2007) Chem Soc Rev 36:198–210

    Article  CAS  Google Scholar 

  25. Rozas I, Kruger PE (2005) J Chem Theory Comput 1:1055–1062

    Article  CAS  Google Scholar 

  26. Blanco F, Kelly B, Alkorta I, Rozas I, Elguero J (2011) Chem Phys Lett 511:129–134

    Article  CAS  Google Scholar 

  27. Kelly B, Sánchez-Sanz G, Blanco F, Rozas I (2012) Comput Theor Chem 998:64–73

    Article  CAS  Google Scholar 

  28. Rozas I, Sánchez-Sanz G, Alkorta I, Elguero J (2013) J Phys Org Chem 26:378–385

    Article  CAS  Google Scholar 

  29. Blanco F, Kelly B, Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J, Rozas I (2013) J Phys Chem B 117:11608–11616

    Article  CAS  Google Scholar 

  30. Marin-Luna M, Sanchez-Sanz G, O’Sullivan P, Rozas I (2014) J Phys Chem A 118:5540–5547

    Article  CAS  Google Scholar 

  31. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  32. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian Inc, Wallingford CT

  34. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  35. Popelier PLA (2012) Quantum chemical topology in drug design. In: Banting L, Clark T (eds) RSC drug discovery series No. 20: drug design strategies: computational techniques and applications, vol 6. Royal Society of Chemistry, Great Britain, pp 120–163

  36. Popelier PLA (2005) Quantum chemical topology: on bonds and potential. In: Wales DJ (ed) Intermolecular forces and clusters I, vol 115. Springer, Heidelberg, pp 1–56

  37. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  38. Keith TA (2011) 11.10.16 edn., 2011, pp. TK Gristmill Software,(aim.tkgristmill.com)

  39. Stockbridge RB, Wolfenden R (2009) J Biol Chem 284:22747–22757

    Article  CAS  Google Scholar 

  40. O’Neil MJ (2006) The Merck index—an encyclopedia of chemicals, drugs, and biologicals. Whitehouse Station,WMerck and Co., Inc., New York

    Google Scholar 

  41. Calculator Plugins were used for structure property prediction and calculation, Marvin 6.0.3, 2013, ChemAxon http://www.chemaxon.com

  42. Sanchez-Sanz G, Alkorta I, Elguero J (2011) Mol Phys 109:2543–2552

    Article  CAS  Google Scholar 

  43. Sanchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) ChemPhysChem 13:496–503

    Article  CAS  Google Scholar 

  44. Sanchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2014) Phys Chem Chem Phys 16:15900–15909

    Article  CAS  Google Scholar 

  45. Bauzá A, Alkorta I, Frontera A, Elguero J (2013) J Chem Theory Comput 9:5201–5210

    Article  Google Scholar 

  46. Alkorta I, Elguero J, Solimannejad M (2014) J Phys Chem A 118:947–953

    Article  CAS  Google Scholar 

  47. Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J (2012) Comput Theor Chem 991:124–133

    Article  Google Scholar 

  48. Matta CF, Arabi AA, Keith TA (2007) J Phys Chem A 111:8864–8872

    Article  CAS  Google Scholar 

  49. Arabi AA, Matta CF (2009) J Phys Chem A 113:3360–3368

    Article  CAS  Google Scholar 

  50. Arabi AA, Matta CF (2010) Energy richness of ATP in terms of atomic energies: a first step. In: Matta CF (ed) Quantum biochemistry: electronic structure and biological activity, vol 1, chap 15. Wiley-VCH, Weinheim, pp 473–498

  51. Rozas I (2007) Phys Chem Chem Phys 9:2782–2790

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are given to the School of Chemistry at Trinity College Dublin for postgraduate support (V.P.) and to the Irish Centre for High-End Computing (ICHEC) and the Trinity Centre for High-Performance Computing (TCHPC) for the provision of computational facilities. We are indebted to Dr. Goar Sánchez from the UCD School of Chemistry, for the AIM analysis and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Trujillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo, C., Previtali, V. & Rozas, I. A theoretical model of the interaction between phosphates in the ATP molecule and guanidinium systems. Theor Chem Acc 135, 260 (2016). https://doi.org/10.1007/s00214-016-2012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2012-8

Keywords

Navigation