Skip to main content
Log in

Why CpAl–Cr(CO)5 is linear while CpIn–Cr(CO)5 is not? Understanding the structure and bonding of the CpE–Cr(CO)5 (E = Group 13 element) complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory computations at the BP86-D3/def2-TZVP level are reported for the CpE–Cr(CO)5 complexes (E = Group 13 element). In principle, we have answered two important facts: first the nature and trend of the E–Cr bonding along B to Tl complexes; second, the deviation of Cp (centroid)-E–Cr angle in In and Tl from linearity. The bonding situation in the complexes is examined via the natural bond orbital, adaptive natural density partitioning, and energy decomposition analysis schemes. Our results reveal that the E–Cr bonding in the lighter compounds is mainly ionic, while this bonding in the In and Tl complexes is dominated by an orbitalic contribution. We also clarify the origin of deviation of Cp (centroid)-E–Cr angle for the In and Tl complexes using simple molecular orbital arguments and find that the repulsive intermolecular contacts in the crystals are not the real source of this deviation as was claimed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jutzi P, Burford N (1999) Chem Rev 99:969–990

    Article  CAS  Google Scholar 

  2. Dohmeier C, Loos D, Schnockel H (1996) Angew Chem Int Ed Engl 35:129–149

    Article  CAS  Google Scholar 

  3. Budzelaar PHM, Engelberts JJ, van Lenthe JH (2003) Organometallics 22:1562–1576

    Article  CAS  Google Scholar 

  4. Fischer RA, Weiss J (1999) Angew Chem Int Ed 38:2831–2850

    CAS  Google Scholar 

  5. Gemel C, Steinke T, Cokoja M, Kempter A, Fischer RA (2004) Eur J Inorg Chem 2004:4161–4176

    Article  Google Scholar 

  6. Jutzi P, Reumann G (2000) J Chem Soc Dalton Trans 2237–2244

  7. Linti G, Schnockel H (2000) Coord Chem Rev 206:285–319

    Article  Google Scholar 

  8. Buchin B, Gemel C, Cadenbach T, Fernandez I, Frenking G, Fischer RA (2006) Angew Chem Int Ed 45:5207–5210

    Article  CAS  Google Scholar 

  9. Buchin B, Gemel C, Cadenbach T, Schmid R, Fischer RA (2006) Angew Chem Int Ed 45:1074–1076

    Article  CAS  Google Scholar 

  10. Jutzi P, Neumann B, Reumann G, Stammler HG (1998) Organometallics 17:1305–1314

    Article  CAS  Google Scholar 

  11. Yu Q, Purath A, Donchev A, Schnockel H (1999) J Organomet Chem 584:94–97

    Article  CAS  Google Scholar 

  12. Jutzi P, Neumann B, Reumann G, Schebaum LO, Stammler HG (1999) Organometallics 18:2550–2552

    Article  CAS  Google Scholar 

  13. Naglav D, Tobey B, Schnepf A (2013) Eur J Inorg Chem 2013:4146–4149

    Article  CAS  Google Scholar 

  14. Weiss J, Stetzkamp D, Nuber B, Fischer RA, Boehme C, Frenking G (1997) Angew Chem Int Ed Engl 36:70–72

    Article  CAS  Google Scholar 

  15. Boehme C, Uddin J, Frenking G (2000) Coord Chem Rev 197:249–276

    Article  CAS  Google Scholar 

  16. Macdonald CLB, Cowley AH (1999) J Am Chem Soc 121:12113–12126

    Article  CAS  Google Scholar 

  17. Uddin J, Boehme C, Frenking G (2000) Organometallics 19:571–582

    Article  CAS  Google Scholar 

  18. Uddin J, Frenking G (2001) J Am Chem Soc 123:1683–1693

    Article  CAS  Google Scholar 

  19. Castro AC, Osorio E, Luis Cabellos J, Cerpa E, Matito E, Sola M, Swart M, Merino G (2014) Chem Eur J 20:4583–4590

    Article  CAS  Google Scholar 

  20. Cerpa E, Tenorio FJ, Contreras M, Villanueva M, Beltran HI, Heine T, Donald KJ, Merino G (2008) Organometallics 27:827–833

    Article  CAS  Google Scholar 

  21. Durango-Garcia CJ, Jalife S, Luis Cabellos J, Martinez SH, Jimenez-Halla JOC, Pan S, Merino G, Montiel-Palma V (2016) RSC Adv 6:3386–3392

    Article  CAS  Google Scholar 

  22. Durango-Garcia CJ, Jimenez-Halla JOC, Lopez-Cardoso M, Montiel-Palma V, Munoz-Hernandez MA, Merino G (2010) Dalton Trans 39:10588–10589

    Article  CAS  Google Scholar 

  23. Fernandez I, Cerpa E, Merino G, Frenking G (2008) Organometallics 27:1106–1111

    Article  CAS  Google Scholar 

  24. Merino G, Beltran HI, Vela A (2006) Inorg Chem 45:1091–1095

    Article  CAS  Google Scholar 

  25. Velazquez A, Fernandez I, Frenking G, Merino G (2007) Organometallics 26:4731–4736

    Article  CAS  Google Scholar 

  26. Mondal S, Cabellos JL, Pan S, Osorio E, Torres-Vega JJ, Tiznado W, Restrepo A, Merino G (2016) Phys Chem Chem Phys 18:11909–11918

    Article  CAS  Google Scholar 

  27. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  28. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  29. Zubarev DY, Boldyrev AI (2008) Phys Chem Chem Phys 10:5207–5217

    Article  CAS  Google Scholar 

  30. Michalak A, Mitoraj M, Ziegler T (2008) J Phys Chem A 112:1933–1939

    Article  CAS  Google Scholar 

  31. Mitoraj M, Michalak A (2007) J Mol Model 13:347–355

    Article  CAS  Google Scholar 

  32. Mitoraj M, Michalak A (2007) Organometallics 26:6576–6580

    Article  CAS  Google Scholar 

  33. Mitoraj MP, Michalak A, Ziegler T (2009) J Chem Theory Comput 5:962–975

    Article  CAS  Google Scholar 

  34. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  35. Perdew JP (1986) Phys Rev B Condens Matter Mater Phys 33:8822–8824

    Article  Google Scholar 

  36. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  37. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  38. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  39. Wiberg KB (1968) Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  41. Kitaura K, Morokuma K (1976) Int J Quant Chem 10:325–340

    Article  CAS  Google Scholar 

  42. Umeyama H, Morokuma K (1977) J Am Chem Soc 99:1316–1332

    Article  CAS  Google Scholar 

  43. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  44. van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943–8953

    Article  Google Scholar 

  45. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    Article  Google Scholar 

  46. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792

    Article  Google Scholar 

  47. Frenking G, Shaik S (Eds) (2014) The Chemical Bond. Fundamental Aspects of Chemical Bonding. Wiley-VCH, Weinheim

    Google Scholar 

  48. von Hopffgarten M, Frenking G (2012) Wiley Interdiscip Rev: Comput Mol Sci 2:43–62

    Google Scholar 

  49. Wolters LP, Bickelhaupt FM (2015) WIRES Comput Mol Sci 5:324–343

    Article  CAS  Google Scholar 

  50. Nguyen TAN, Huynh TPL, Tran TH, Pham VT, Duong TQ, Dang TH (2016) Z Anorg Allg Chem 642:609–617

    Article  CAS  Google Scholar 

  51. Alexandratos S, Streitwieser A, Schaefer HF (1976) J Am Chem Soc 98:7959–7962

    Article  CAS  Google Scholar 

  52. Jemmis ED, Schleyer PVR (1982) J Am Chem Soc 104:4781–4788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work in Mexico is supported by Conacyt via Red Temática de Fisicoquímica Teórica. Contributions from Colombia are supported by Colciencias (Grant No. 211665842965).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Merino.

Additional information

Dedicated to Professor Alberto Vela on the occasion of his 60th birthday.

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Osorio, E., Pan, S. et al. Why CpAl–Cr(CO)5 is linear while CpIn–Cr(CO)5 is not? Understanding the structure and bonding of the CpE–Cr(CO)5 (E = Group 13 element) complexes. Theor Chem Acc 135, 240 (2016). https://doi.org/10.1007/s00214-016-1993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1993-7

Keywords

Navigation