Advertisement

Why CpAl–Cr(CO)5 is linear while CpIn–Cr(CO)5 is not? Understanding the structure and bonding of the CpE–Cr(CO)5 (E = Group 13 element) complexes

  • Sukanta Mondal
  • Edison Osorio
  • Sudip Pan
  • José Luis Cabellos
  • Saul Martínez
  • Elizabeth Florez
  • Gabriel MerinoEmail author
Regular Article
Part of the following topical collections:
  1. Festschrift in honour of A. Vela

Abstract

Density functional theory computations at the BP86-D3/def2-TZVP level are reported for the CpE–Cr(CO)5 complexes (E = Group 13 element). In principle, we have answered two important facts: first the nature and trend of the E–Cr bonding along B to Tl complexes; second, the deviation of Cp (centroid)-E–Cr angle in In and Tl from linearity. The bonding situation in the complexes is examined via the natural bond orbital, adaptive natural density partitioning, and energy decomposition analysis schemes. Our results reveal that the E–Cr bonding in the lighter compounds is mainly ionic, while this bonding in the In and Tl complexes is dominated by an orbitalic contribution. We also clarify the origin of deviation of Cp (centroid)-E–Cr angle for the In and Tl complexes using simple molecular orbital arguments and find that the repulsive intermolecular contacts in the crystals are not the real source of this deviation as was claimed.

Keywords

Half-Sandwich ligands Coordination compounds Bonding analysis 

Notes

Acknowledgments

The work in Mexico is supported by Conacyt via Red Temática de Fisicoquímica Teórica. Contributions from Colombia are supported by Colciencias (Grant No. 211665842965).

Supplementary material

214_2016_1993_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    Jutzi P, Burford N (1999) Chem Rev 99:969–990CrossRefGoogle Scholar
  2. 2.
    Dohmeier C, Loos D, Schnockel H (1996) Angew Chem Int Ed Engl 35:129–149CrossRefGoogle Scholar
  3. 3.
    Budzelaar PHM, Engelberts JJ, van Lenthe JH (2003) Organometallics 22:1562–1576CrossRefGoogle Scholar
  4. 4.
    Fischer RA, Weiss J (1999) Angew Chem Int Ed 38:2831–2850Google Scholar
  5. 5.
    Gemel C, Steinke T, Cokoja M, Kempter A, Fischer RA (2004) Eur J Inorg Chem 2004:4161–4176CrossRefGoogle Scholar
  6. 6.
    Jutzi P, Reumann G (2000) J Chem Soc Dalton Trans 2237–2244Google Scholar
  7. 7.
    Linti G, Schnockel H (2000) Coord Chem Rev 206:285–319CrossRefGoogle Scholar
  8. 8.
    Buchin B, Gemel C, Cadenbach T, Fernandez I, Frenking G, Fischer RA (2006) Angew Chem Int Ed 45:5207–5210CrossRefGoogle Scholar
  9. 9.
    Buchin B, Gemel C, Cadenbach T, Schmid R, Fischer RA (2006) Angew Chem Int Ed 45:1074–1076CrossRefGoogle Scholar
  10. 10.
    Jutzi P, Neumann B, Reumann G, Stammler HG (1998) Organometallics 17:1305–1314CrossRefGoogle Scholar
  11. 11.
    Yu Q, Purath A, Donchev A, Schnockel H (1999) J Organomet Chem 584:94–97CrossRefGoogle Scholar
  12. 12.
    Jutzi P, Neumann B, Reumann G, Schebaum LO, Stammler HG (1999) Organometallics 18:2550–2552CrossRefGoogle Scholar
  13. 13.
    Naglav D, Tobey B, Schnepf A (2013) Eur J Inorg Chem 2013:4146–4149CrossRefGoogle Scholar
  14. 14.
    Weiss J, Stetzkamp D, Nuber B, Fischer RA, Boehme C, Frenking G (1997) Angew Chem Int Ed Engl 36:70–72CrossRefGoogle Scholar
  15. 15.
    Boehme C, Uddin J, Frenking G (2000) Coord Chem Rev 197:249–276CrossRefGoogle Scholar
  16. 16.
    Macdonald CLB, Cowley AH (1999) J Am Chem Soc 121:12113–12126CrossRefGoogle Scholar
  17. 17.
    Uddin J, Boehme C, Frenking G (2000) Organometallics 19:571–582CrossRefGoogle Scholar
  18. 18.
    Uddin J, Frenking G (2001) J Am Chem Soc 123:1683–1693CrossRefGoogle Scholar
  19. 19.
    Castro AC, Osorio E, Luis Cabellos J, Cerpa E, Matito E, Sola M, Swart M, Merino G (2014) Chem Eur J 20:4583–4590CrossRefGoogle Scholar
  20. 20.
    Cerpa E, Tenorio FJ, Contreras M, Villanueva M, Beltran HI, Heine T, Donald KJ, Merino G (2008) Organometallics 27:827–833CrossRefGoogle Scholar
  21. 21.
    Durango-Garcia CJ, Jalife S, Luis Cabellos J, Martinez SH, Jimenez-Halla JOC, Pan S, Merino G, Montiel-Palma V (2016) RSC Adv 6:3386–3392CrossRefGoogle Scholar
  22. 22.
    Durango-Garcia CJ, Jimenez-Halla JOC, Lopez-Cardoso M, Montiel-Palma V, Munoz-Hernandez MA, Merino G (2010) Dalton Trans 39:10588–10589CrossRefGoogle Scholar
  23. 23.
    Fernandez I, Cerpa E, Merino G, Frenking G (2008) Organometallics 27:1106–1111CrossRefGoogle Scholar
  24. 24.
    Merino G, Beltran HI, Vela A (2006) Inorg Chem 45:1091–1095CrossRefGoogle Scholar
  25. 25.
    Velazquez A, Fernandez I, Frenking G, Merino G (2007) Organometallics 26:4731–4736CrossRefGoogle Scholar
  26. 26.
    Mondal S, Cabellos JL, Pan S, Osorio E, Torres-Vega JJ, Tiznado W, Restrepo A, Merino G (2016) Phys Chem Chem Phys 18:11909–11918CrossRefGoogle Scholar
  27. 27.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  28. 28.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746CrossRefGoogle Scholar
  29. 29.
    Zubarev DY, Boldyrev AI (2008) Phys Chem Chem Phys 10:5207–5217CrossRefGoogle Scholar
  30. 30.
    Michalak A, Mitoraj M, Ziegler T (2008) J Phys Chem A 112:1933–1939CrossRefGoogle Scholar
  31. 31.
    Mitoraj M, Michalak A (2007) J Mol Model 13:347–355CrossRefGoogle Scholar
  32. 32.
    Mitoraj M, Michalak A (2007) Organometallics 26:6576–6580CrossRefGoogle Scholar
  33. 33.
    Mitoraj MP, Michalak A, Ziegler T (2009) J Chem Theory Comput 5:962–975CrossRefGoogle Scholar
  34. 34.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  35. 35.
    Perdew JP (1986) Phys Rev B Condens Matter Mater Phys 33:8822–8824CrossRefGoogle Scholar
  36. 36.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  37. 37.
    Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569CrossRefGoogle Scholar
  38. 38.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  39. 39.
    Wiberg KB (1968) Tetrahedron 24:1083CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  41. 41.
    Kitaura K, Morokuma K (1976) Int J Quant Chem 10:325–340CrossRefGoogle Scholar
  42. 42.
    Umeyama H, Morokuma K (1977) J Am Chem Soc 99:1316–1332CrossRefGoogle Scholar
  43. 43.
    te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  44. 44.
    van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943–8953CrossRefGoogle Scholar
  45. 45.
    van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610CrossRefGoogle Scholar
  46. 46.
    van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792CrossRefGoogle Scholar
  47. 47.
    Frenking G, Shaik S (Eds) (2014) The Chemical Bond. Fundamental Aspects of Chemical Bonding. Wiley-VCH, WeinheimGoogle Scholar
  48. 48.
    von Hopffgarten M, Frenking G (2012) Wiley Interdiscip Rev: Comput Mol Sci 2:43–62Google Scholar
  49. 49.
    Wolters LP, Bickelhaupt FM (2015) WIRES Comput Mol Sci 5:324–343CrossRefGoogle Scholar
  50. 50.
    Nguyen TAN, Huynh TPL, Tran TH, Pham VT, Duong TQ, Dang TH (2016) Z Anorg Allg Chem 642:609–617CrossRefGoogle Scholar
  51. 51.
    Alexandratos S, Streitwieser A, Schaefer HF (1976) J Am Chem Soc 98:7959–7962CrossRefGoogle Scholar
  52. 52.
    Jemmis ED, Schleyer PVR (1982) J Am Chem Soc 104:4781–4788CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sukanta Mondal
    • 1
  • Edison Osorio
    • 2
  • Sudip Pan
    • 1
  • José Luis Cabellos
    • 1
  • Saul Martínez
    • 1
  • Elizabeth Florez
    • 3
  • Gabriel Merino
    • 1
    Email author
  1. 1.Departamento de Física AplicadaCentro de Investigación y de Estudios AvanzadosMéridaMexico
  2. 2.Departamento de Ciencias BásicasFundación Universitaria Luis Amigó, SISCOMedellínColombia
  3. 3.Departamento de Ciencias BásicasUniversidad de MedellínMedellínColombia

Personalised recommendations