Theoretical study of C–X [X = Cl, Br] bond activation on aluminum nanoclusters

  • Tumpa Sadhukhan
  • Bipasa Samanta
  • Shaz Ali Ansari
  • Sourav PalEmail author
Regular Article
Part of the following topical collections:
  1. Festschrift in honour of A. Vela


The C–X [X = Cl, Br] bond dissociation is a challenging problem due to its high activation barrier. Many transition metal-based clusters, acting as catalysts, are known to dissociate this bond. We have carried out DFT-based calculation and found that small-sized aluminum clusters can break these bonds quite effectively with a high rate constant. Our analysis gives a detailed description of thermodynamics and kinetics of the reaction. Fukui functions and NBO calculation provide an insight into the reactivity and mechanism. Hence nanoaluminum clusters can dissociate C–X bond with a lower activation barrier compared to the known gold or platinum catalysts.


Density functional theory Reactivity Bond activation Mechanism Aluminum Cluster 



T.S. and S.P. acknowledge the J.C. Bose Fellowship grant of DST. B.S. thanks Indian Institute Technology Bombay for JRF (Junior Research Fellowship). We also thank I.I.T. Bombay computer center facility.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

214_2016_1990_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (PDF 2460 kb)


  1. 1.
    Melchor MG (2013) A theoretical study of Pd-catalyzed C–C cross-coupling reactions, Springer. doi: 10.1007/978-3-319-01490-6
  2. 2.
    Colacot T (ed) (2014) New trends in cross-coupling: theory and applications, vol 21. The Royal Society of Chemistry, LondonGoogle Scholar
  3. 3.
    Beletskaya IP, Cheprakov AV (2004) Coord Chem Rev 248:2337CrossRefGoogle Scholar
  4. 4.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457CrossRefGoogle Scholar
  5. 5.
    Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062CrossRefGoogle Scholar
  6. 6.
    Heck RF (1985) Palladium reagents in organic syntheses, vol 6. Academic Press, LondonGoogle Scholar
  7. 7.
    King A, Okukado N, Negishi E (1977) J Chem Soc Chem Commun (19):683Google Scholar
  8. 8.
    Suzuki A (1999) J Organomet Chem 576:147CrossRefGoogle Scholar
  9. 9.
    Tamao K, Sumitani K, Kumada M (1972) J Am Chem Soc 94:4374CrossRefGoogle Scholar
  10. 10.
    Sonogashira K (2002) J Organomet Chem 653:46CrossRefGoogle Scholar
  11. 11.
    Stille JK (1986) Angew Chem Int Ed Engl 25:508CrossRefGoogle Scholar
  12. 12.
    Glaser C (1869) Ber Dtsch Chem Ges 2:422CrossRefGoogle Scholar
  13. 13.
    Glaser C (1870) Ann Chem Pharm 154:137CrossRefGoogle Scholar
  14. 14.
    Fürstner A, Leitner A, Méndez M, Krause H (2002) J Am Chem Soc 124:13856CrossRefGoogle Scholar
  15. 15.
    Fürstner A, Martin R (2005) Chem Lett 34:624CrossRefGoogle Scholar
  16. 16.
    Sherry BD, Fürstner A (2008) Acc Chem Res 41:1500CrossRefGoogle Scholar
  17. 17.
    Zhang G, Peng Y, Cui L, Zhang L (2009) Angew Chem Int Ed 48:3112CrossRefGoogle Scholar
  18. 18.
    Han J, Liu Y, Guo R (2009) J Am Chem Soc 131:2060CrossRefGoogle Scholar
  19. 19.
    González-Arellano C, Abad A, Corma A, García H, Iglesias M, Sanchez F (2007) Angew Chem Int Ed 119:1558CrossRefGoogle Scholar
  20. 20.
    Wurtz A (1855) Ann Chim Phys 44:275Google Scholar
  21. 21.
    Wurtz A (1855) Ann Chem Pharm 96:364CrossRefGoogle Scholar
  22. 22.
    Grignard V (1900) C R Hebd Seances Acad Sci 130:1322Google Scholar
  23. 23.
    Molnar A (2011) Chem Rev 111:2251CrossRefGoogle Scholar
  24. 24.
    Albers P, Pietsch J, Parker SF (2001) J Mol Catal A Chem 173:275CrossRefGoogle Scholar
  25. 25.
    Webb JD, MacQuarrie S, McEleney K, Crudden CM (2007) J Catal 252:97CrossRefGoogle Scholar
  26. 26.
    Bodnar J, Lugosi G, Nagy G (1980) US Patent 4 239:653Google Scholar
  27. 27.
    Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Percec V (2010) Chem Rev 111:1346CrossRefGoogle Scholar
  28. 28.
    Kielhorn J, Melber C, Keller D, Mangelsdorf I (2002) Int J Hyg Environ Health 205:417CrossRefGoogle Scholar
  29. 29.
    Gong J (2012) Chem Rev 112:2987CrossRefGoogle Scholar
  30. 30.
    Mikami Y, Dhakshinamoorthy A, Alvaro M, García H (2013) Catal Sci Technol 3:58CrossRefGoogle Scholar
  31. 31.
    Stratakis M, García H (2012) Chem Rev 112:4469CrossRefGoogle Scholar
  32. 32.
    Daniel MC, Astruc D (2004) Chem Rev 104:293CrossRefGoogle Scholar
  33. 33.
    Mohan PJ, Datta A, Mallajosyula SM, Pati SK (2006) J Phys Chem B 110:18661CrossRefGoogle Scholar
  34. 34.
    Lang SM, Bernhardt TM, Barnett RN, Landman U (2010) Angew Chem Int Ed 49:980CrossRefGoogle Scholar
  35. 35.
    Pal R, Wang LM, Pei Y, Wang LS, Zeng XC (2012) J Am Chem Soc 134:9438CrossRefGoogle Scholar
  36. 36.
    Wu XN, Li XN, Ding XL, He SG (2013) Angew Chem Int Ed 52:2444CrossRefGoogle Scholar
  37. 37.
    Lang SM, Bernhardt TM (2011) Faraday Discuss 152:337CrossRefGoogle Scholar
  38. 38.
    Chang CR, Wang YG, Li J (2011) Nano Res 4:131CrossRefGoogle Scholar
  39. 39.
    Haruta M (1997) Catal Today 36:153CrossRefGoogle Scholar
  40. 40.
    Lopez N, Janssens TVJ, Clausen BS, Xu Y, Mavrikakis M, Bliggard T, Nørskov JK (2004) J Catal 223:232Google Scholar
  41. 41.
    Nijamudheen A, Datta A (2013) J Phys Chem C 117:21433CrossRefGoogle Scholar
  42. 42.
    González-Arellano C, Abad A, Corma A, García H, Iglesias M, Sanchez F (2007) Angew Chem Int Ed 119:1558CrossRefGoogle Scholar
  43. 43.
    Corma A, Juárez R, Boronat M, Sánchez F, Iglesias M, García H (2011) Chem Commun 47:1446CrossRefGoogle Scholar
  44. 44.
    Khanna SN, Jena P (1992) Phys Rev Lett 69:1664CrossRefGoogle Scholar
  45. 45.
    Khanna SN, Jena P (1995) Phys Rev B Condens Matter 51:13705CrossRefGoogle Scholar
  46. 46.
    Jones N, Reveles JU, Khanna SN, Bergeron D, Roach P, Castleman AW Jr (2006) J Chem Phys 124:154311CrossRefGoogle Scholar
  47. 47.
    Cox D, Trevor D, Whetten R, Kaldor A (1988) J Phys Chem 92:421CrossRefGoogle Scholar
  48. 48.
    Jarrold MF, Bower JE (1988) J Am Chem Soc 110:70CrossRefGoogle Scholar
  49. 49.
    Woodward WH, Eyet N, Shuman NS, Smith JC, Viggiano AA, Castleman AW Jr (2011) J Phys Chem C 115:9903CrossRefGoogle Scholar
  50. 50.
    Kulkarni BS, Krishnamurty S, Pal S (2011) J Phys Chem C 115:14615CrossRefGoogle Scholar
  51. 51.
    Das S, Pal S, Krishnamurty S (2014) J Phys Chem C 118:19869CrossRefGoogle Scholar
  52. 52.
    Burgert R, Schnöckel H, Grubisic A, Li X, Stokes ST, Bowen KH, Ganteför G, Kiran B, Jena P (2008) Science 319:438CrossRefGoogle Scholar
  53. 53.
    Neumaier M, Olzmann M, Kiran B, Bowen KH, Eichhorn B, Stokes ST, Buonaugurio A, Burgert R, Schnockel H (2014) J Am Chem Soc 136:3607CrossRefGoogle Scholar
  54. 54.
    Burgert R, Schnöckel H (2008) Chem Commun (18):2075Google Scholar
  55. 55.
    Bergeron DE, Castleman AW Jr, Morisato T, Khanna SN (2004) Science 304:84CrossRefGoogle Scholar
  56. 56.
    Bergeron DE, Roach P, Castleman AW Jr, Jones N, Khanna SN (2005) Science 307:231CrossRefGoogle Scholar
  57. 57.
    Clayborne P, Jones NO, Reber AC, Reveles JU, Qian M, Khanna SN (2007) J Comput Methods Sci Eng 7:417–430Google Scholar
  58. 58.
    Reber AC, Khanna SN, Castleman AW Jr (2007) J Am Chem Soc 129:10189CrossRefGoogle Scholar
  59. 59.
    Reveles JU, Khanna S, Roach P, Castleman A (2006) Proc Natl Acad Sci USA 103:18405–18410CrossRefGoogle Scholar
  60. 60.
    Bergeron DE, Castleman AW Jr (2003) Chem Phys Lett 371:189CrossRefGoogle Scholar
  61. 61.
    Mezhenny S, Sorescu DC, Maksymovych P, Yates JT (2002) J Am Chem Soc 124:14202CrossRefGoogle Scholar
  62. 62.
    Knight WD, Clemenger K, Heer WA, Saunders WA, Chou M, Cohen ML (1984) Phys Rev Lett 52:2141CrossRefGoogle Scholar
  63. 63.
    Burgert R, Stokes ST, Bowen KH, Schnöckel H (2006) J Am Chem Soc 128:7904CrossRefGoogle Scholar
  64. 64.
    Burgert R, Schnöckel H, Olzmann M, Bowen KH (2006) Angew Chem Int Ed 45:1476CrossRefGoogle Scholar
  65. 65.
    Jena P (2015) J Phys Chem Lett 6:1549–1552CrossRefGoogle Scholar
  66. 66.
    Sengupta T, Das S, Pal S (2015) Nanoscale 7:12109CrossRefGoogle Scholar
  67. 67.
    Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255CrossRefGoogle Scholar
  68. 68.
    Frisch MJ et al (2009) Gaussian 09, revision A.02. Gaussian Inc WallingfordGoogle Scholar
  69. 69.
    Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  70. 70.
    Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835CrossRefGoogle Scholar
  71. 71.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  72. 72.
    Boys SF, Bernardi FD (1970) Mol Phys 19:553CrossRefGoogle Scholar
  73. 73.
    Eyring H (1935) J Chem Phys 3:107CrossRefGoogle Scholar
  74. 74.
    Eyring H (1935) Chem Rev 17:65CrossRefGoogle Scholar
  75. 75.
    Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875CrossRefGoogle Scholar
  76. 76.
    Parr RG, Yang W (1984) J Am Chem Soc 106:4049CrossRefGoogle Scholar
  77. 77.
    Yang W, Parr RG (1985) Proc Natl Acad Sci USA 821:6723CrossRefGoogle Scholar
  78. 78.
    Roy RK, Pal S, Hirao K (1999) J Chem Phys 110:8236CrossRefGoogle Scholar
  79. 79.
    Rao B, Jena P (1999) J Chem Phys 111:1890–1904CrossRefGoogle Scholar
  80. 80.
    Rondina GG, Da Silva JL (2013) J Chem Inf Model 53:2282–2298CrossRefGoogle Scholar
  81. 81.
    Candido L, Rabelo JT, Da Silva JL, Hai GQ (2012) Phys Rev B Condens Matter Mater Phys 85:245404CrossRefGoogle Scholar
  82. 82.
    Alonso JA et al (2005) Structure and properties of atomic nanoclusters. Imperial College Press, LondonGoogle Scholar
  83. 83.
    Poater J, Sola M, Duran M, Robles J (2002) Phys Chem Chem Phys 4:722–731CrossRefGoogle Scholar
  84. 84.
    Johnston RL (2002) Atomic and molecular clusters. CRC Press, United States of AmericaGoogle Scholar
  85. 85.
    Pal S, Chandrakumar KRS (2000) J Am Chem Soc 122:4145CrossRefGoogle Scholar
  86. 86.
    Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) J Phys Chem A 102:3746CrossRefGoogle Scholar
  87. 87.
    Dhital RN, Kamonsatikul C, Somsook E, Bobuatong K, Ehara M, Karanjit S, Sakurai H (2012) J Am Chem Soc 134:20250CrossRefGoogle Scholar
  88. 88.
    Boekfa B, Pahl E, Gaston N, Sakurai H, Limtrakul J, Ehara M (2014) J Phys Chem 118:22188Google Scholar
  89. 89.
    Livendahl M, Goehry C, Maseras F, Echavarren AM (2014) Chem Commun 50:1533CrossRefGoogle Scholar
  90. 90.
    Ignatov SK, Panteleev SV, Maslennikov SV, Spirina IV (2012) Russ J Gen Chem 82:1954CrossRefGoogle Scholar
  91. 91.
    Harikumar KR, Petsalakis ID, Polanyi JC, Theodorakopoulos G (2004) Surf Sci 572:162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tumpa Sadhukhan
    • 1
  • Bipasa Samanta
    • 1
  • Shaz Ali Ansari
    • 1
  • Sourav Pal
    • 1
    Email author
  1. 1.Department of ChemistryIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations