Advertisement

Quantum chemical study of the effect of π-bridge on the optical and electronic properties of sensitizers for DSSCs incorporating dioxythiophene and thiophene units

  • Tomás Delgado-Montiel
  • Jesús Baldenebro-LópezEmail author
  • Rody Soto-Rojo
  • Daniel Glossman-MitnikEmail author
Regular Article
Part of the following topical collections:
  1. Festschrift in honour of A. Vela

Abstract

Twelve molecules were theoretically studied through density functional theory with the M06 density functional and the 6-31G(d) basis set. The molecular systems have potential application as sensitizers for dye-sensitized solar cells; these molecular structures are composed of triphenylamine as the donor moiety, different conjugation orders of thiophene and dioxythiophene as the π-bridge, and cyanoacrylic acid as the acceptor moiety. This study focused on the effect of the π-bridge on the properties of interest. Ground-state geometry optimization, the highest occupied molecular orbital, the lowest unoccupied molecular orbital, and their energy levels were calculated and analyzed. Absorption wavelengths, vertical energy, oscillator strength, and electron transitions were calculated through time-dependent density functional theory with the M06-2X and CAM-B3LYP functionals using the 6-31G(d) basis set. Driving force of injection (ΔG inj) was calculated and analyzed from the ground-state oxidation potential of the dye and the energy associated with the maximum absorption wavelength. As an important element presented in this study, chemical reactivity parameters are discussed, such as chemical hardness, electrodonating power, electroaccepting power, and electrophilicity index. In conclusion, a reliable methodology was presented and discussed to predict properties in triphenylamine derivative dyes considering the modification of the π-bridge.

Keywords

DSSC DFT π-Bridge Planarity Chemical reactivity Sensitizer 

Notes

Acknowledgments

This work was supported by Universidad Autónoma de Sinaloa (UAS) and Consejo Nacional de Ciencia y Tecnología (CONACYT) and Centro de Investigación en Materiales Avanzados, S.C. (CIMAV). T.D.M. gratefully acknowledges a fellowship from CONACYT. J.B.L. and R.S.R. are professors and researchers at UAS and CONACYT. D.G.M. is a researcher at CIMAV and CONACYT. The authors also gratefully acknowledge Rodrigo Domίnguez from CIMAV for his technical assistance.

Supplementary material

214_2016_1989_MOESM1_ESM.docx (813 kb)
Supplementary material 1 (DOCX 813 kb)

References

  1. 1.
    Duan T, Fan K, Fu Y et al (2012) Dye Pigment 94:28–33CrossRefGoogle Scholar
  2. 2.
    Feng J, Jiao Y, Ma W et al (2013) J Phys Chem C 117:3772–3778CrossRefGoogle Scholar
  3. 3.
    O’Regan B, Grätzel M (1991) Nature 353:737–740CrossRefGoogle Scholar
  4. 4.
    Shen P, Liu Y, Huang X et al (2009) Dye Pigment 83:187–197CrossRefGoogle Scholar
  5. 5.
    Peng D, Tang G, Hu J et al (2015) Polym Bull 72:653–669CrossRefGoogle Scholar
  6. 6.
    Ozawa H, Okuyama Y, Arakawa H (2014) ChemPhysChem 15:1201–1206CrossRefGoogle Scholar
  7. 7.
    Mathew S, Yella A, Gao P et al (2014) Nat Chem 6:242–247CrossRefGoogle Scholar
  8. 8.
    Zhang M, Wang Y, Xu M et al (2013) Energy Environ Sci 6:2944–2949CrossRefGoogle Scholar
  9. 9.
    Kakiage K, Aoyama Y, Yano T et al (2015) Chem Commun 51:15894–15897CrossRefGoogle Scholar
  10. 10.
    Liu W-H, Wu I-C, Lai C-H, et al (2008) Chem Commun 5152-5154Google Scholar
  11. 11.
    Hagfeldt A, Boschloo G, Sun L et al (2010) Chem Rev 110:6595–6663CrossRefGoogle Scholar
  12. 12.
    Zhu S, An Z, Chen X et al (2014) RSC Adv 4:42252–42259CrossRefGoogle Scholar
  13. 13.
    Hwang S, Lee JH, Park C et al (2007) Chem Commun 2007:4887–4889CrossRefGoogle Scholar
  14. 14.
    Tsao M, Wu T, Wang H et al (2011) Mater Lett 65:583–586CrossRefGoogle Scholar
  15. 15.
    Hara K, Wang Z, Sato T et al (2005) J Phys Chem B 109:15476–15482CrossRefGoogle Scholar
  16. 16.
    Lim K, Song K, Kang Y, Ko J (2015) Dye Pigment 119:41–48CrossRefGoogle Scholar
  17. 17.
    Zhang G, Bala H, Cheng Y, et al (2009) Chem Commun (Camb) 2198-2200Google Scholar
  18. 18.
    Jiang K-J, Manseki K, Yu Y et al (2009) New J Chem 33:1973–1977CrossRefGoogle Scholar
  19. 19.
    Grisorio R, De Marco L, Agosta R et al (2014) ChemSusChem 7:2659–2669CrossRefGoogle Scholar
  20. 20.
    Chang YJ, Chow TJ (2009) Tetrahedron 65:4726–4734CrossRefGoogle Scholar
  21. 21.
    Duan T, Hsiao T-Y, Chi Y et al (2016) Dye Pigment 124:45–52CrossRefGoogle Scholar
  22. 22.
    Sivanadanam J, Ganesan P, Madhumitha R et al (2015) J Photochem Photobiol A Chem 299:194–202CrossRefGoogle Scholar
  23. 23.
    Park SS, Won YS, Choi YC, Kim JH (2009) Energy Fuels 23:3732–3736CrossRefGoogle Scholar
  24. 24.
    Baik C, Kim D, Kang M et al (2009) J Photochem Photobiol A Chem 201:168–174CrossRefGoogle Scholar
  25. 25.
    Yigit MZ, Bilgili H, Sefer E et al (2014) Electrochim Acta 147:617–625CrossRefGoogle Scholar
  26. 26.
    Liu J, Yang X, Zhao J, Sun L (2013) RSC Adv 3:15734–15743CrossRefGoogle Scholar
  27. 27.
    Tiwari A, Pal U (2015) Int J Hydrog Energy 40:9069–9079CrossRefGoogle Scholar
  28. 28.
    Hagberg D, Edvinsson T, Marinado T et al (2006) Chem Commun 2006:2245–2247CrossRefGoogle Scholar
  29. 29.
    Zhang G, Bala H, Cheng Y et al (2009) Chem Commun 2009:2198–2200CrossRefGoogle Scholar
  30. 30.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871CrossRefGoogle Scholar
  31. 31.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  33. 33.
    Francl MM, Pietro WJ, Hehre WJ et al (1982) J Chem Phys 77:3654CrossRefGoogle Scholar
  34. 34.
    Rassolov VA, Ratner MA, Pople JA et al (2001) J Comp Chem 22:976–984CrossRefGoogle Scholar
  35. 35.
    Burke K, Werschnik J, Gross EKU (2005) J Chem Phys 123:062206CrossRefGoogle Scholar
  36. 36.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218CrossRefGoogle Scholar
  37. 37.
    Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  38. 38.
    Dev P, Agrawal S, English NJ (2012) J Chem Phys 136:224301CrossRefGoogle Scholar
  39. 39.
    Jacquemin D, Perpète EA, Ciofini I et al (2010) J Chem Theory Comput 6:2071–2085CrossRefGoogle Scholar
  40. 40.
    Jacquemin D, Planchat A, Adamo C et al (2012) J Chem Theory Comput 8:2359–2372CrossRefGoogle Scholar
  41. 41.
    Baldenebro-López J, Castorena-González J, Flores-Holguín N et al (2012) Int J Mol Sci 13:4418–4432CrossRefGoogle Scholar
  42. 42.
    Cossi M, Barone V (2001) J Chem Phys 115:4708CrossRefGoogle Scholar
  43. 43.
    Improta R, Barone V, Scalmani G, Frisch MJ (2006) J Chem Phys 125:054103CrossRefGoogle Scholar
  44. 44.
    Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032CrossRefGoogle Scholar
  45. 45.
    Gorelsky SI, Lever BP (2001) J Organomet Chem 635:187–196CrossRefGoogle Scholar
  46. 46.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  47. 47.
    Gázquez JL, Cedillo A, Vela A (2007) J Phys Chem A 111:1966–1970CrossRefGoogle Scholar
  48. 48.
    Parr RG, Szentpály L, Liu S (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  49. 49.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09 software Inc. Wallingford, CTGoogle Scholar
  50. 50.
    Namuangruk S, Jungsuttiwong S, Kungwan N (2016) Theor Chem Acc 135:14CrossRefGoogle Scholar
  51. 51.
    Nattestad A, Mozer AJ, Fischer MKR et al (2010) Nat Mater 9:31–35CrossRefGoogle Scholar
  52. 52.
    Joly D, Pellejà L, Narbey S et al (2015) Energy Environ Sci 8:2010–2018CrossRefGoogle Scholar
  53. 53.
    Cong J, Yang X, Kloo L, Sun L (2012) Energy Environ Sci 5:9180–9194CrossRefGoogle Scholar
  54. 54.
    Wang Z-S, Yamaguchi T, Sugihara H, Arakawa H (2005) Langmuir 21:4272–4276CrossRefGoogle Scholar
  55. 55.
    Sang-aroon W, Saekow S, Amornkitbamrung V (2012) J Photochem Photobiol A Chem 236:35–40CrossRefGoogle Scholar
  56. 56.
    Sun M, Cao Z (2014) Theor Chem Acc 133:1531CrossRefGoogle Scholar
  57. 57.
    Tachibana Y, Hara K, Sayama K, Arakawa H (2002) Chem Mater 14:2527–2535CrossRefGoogle Scholar
  58. 58.
    Tian H, Yang X, Chen R et al (2008) J Phys Chem C 112:11023–11033CrossRefGoogle Scholar
  59. 59.
    Yu L, Xi J, Chan HT et al (2013) J Phys Chem C 117:2041–2052CrossRefGoogle Scholar
  60. 60.
    Wu Y, Marszalek M, Zakeeruddin SM et al (2012) Energy Environ Sci 5:8261–8272CrossRefGoogle Scholar
  61. 61.
    Barpuzary D, Patra AS, Vaghasiya JV et al (2014) ACS Appl Mater Interfaces 6:12629–12639CrossRefGoogle Scholar
  62. 62.
    Mehmood U, Hussein I, Harrabi K et al (2015) Int J Photoenergy 2015:286730CrossRefGoogle Scholar
  63. 63.
    Islam A, Sugihara H, Arakawa H (2003) J Photochem Photobiol A Chem 158:131–138CrossRefGoogle Scholar
  64. 64.
    Ning Z, Zhang Q, Wu W et al (2008) J Org Chem 73:3791–3797CrossRefGoogle Scholar
  65. 65.
    Sayama K, Tsukagoshi S, Hara K et al (2002) J Phys Chem B 106:1363–1371CrossRefGoogle Scholar
  66. 66.
    Parr RG, Weitao Y (1994) Density Functional Theory of Atoms and Molecules. Oxford University Press, OxfordGoogle Scholar
  67. 67.
    Chermette H (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  68. 68.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  69. 69.
    Nalewajski R (2003) Adv Quantum Chem 43:119–184CrossRefGoogle Scholar
  70. 70.
    Chattaraj P, Sarkar U, Roy D (2006) Chem Rev 106:2065–2091CrossRefGoogle Scholar
  71. 71.
    Gázquez J (1995) Conf Proceedings 342:140–146Google Scholar
  72. 72.
    Mineva T, Sicilia E, Russo N (1998) J Am Chem Soc 120:9053–9058CrossRefGoogle Scholar
  73. 73.
    Ayers P, Parr RG (2008) J Chem Phys 128:184108CrossRefGoogle Scholar
  74. 74.
    Chattaraj P (2009) Chemical Reactivity Theory. CRC Press, Boca RatonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Facultad de Ingeniería MochisUniversidad Autónoma de SinaloaLos MochisMexico
  2. 2.Departament de QuímicaUniversitat de les Illes BalearsPalma de MallorcaSpain
  3. 3.Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales AvanzadosChihuahuaMexico

Personalised recommendations