Numerical test of SAC-CI methods for calculating vertical ionization energies

  • H. H. Corzo
  • Jared M. Krosser
  • Annia Galano
  • J. V. OrtizEmail author
Regular Article
Part of the following topical collections:
  1. Festschrift in honour of A. Vela


Valence, vertical ionization energies of a representative set of closed-shell molecules were calculated with the symmetry-adapted-cluster, configuration-interaction (SAC-CI) method using ten basis sets for its level 1 and level 2 operator inclusion criteria, whereas for its more stringent level 3 scheme, 15 basis sets were used. SAC-CI level 3 is capable of producing mean unsigned errors of approximately 0.2 eV with quadruple \(\zeta\) correlation-consistent basis sets. Fortuitously better results may be obtained when smaller basis sets are used. Anomalous behavior with respect to the basis set size may occur when the level 1 and level 2 options are employed.


SAC-CI Ionization energies Vertical detachment energy 



The National Science Foundation supported this research through grant CHE-1565760 to Auburn University.


  1. 1.
    Levy M, Perdew JP, Sahni V (1984) Phys Rev A 30:2745–2748CrossRefGoogle Scholar
  2. 2.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874CrossRefGoogle Scholar
  3. 3.
    Marcus RA (1993) Rev Mod Phys 65:599–610CrossRefGoogle Scholar
  4. 4.
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971–5004CrossRefGoogle Scholar
  5. 5.
    Diarra M, Niquet Y-M, Delerue C, Allan G (2007) Phys Rev B 75:045301CrossRefGoogle Scholar
  6. 6.
    Go EP, Apon JV, Luo G, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Anal Chem 77:1641–1646CrossRefGoogle Scholar
  7. 7.
    Kauppila TJ, Kostiainen R, Bruins AP (2004) Rapid Commun Mass Spectrom 18:808–815CrossRefGoogle Scholar
  8. 8.
    Gázquez JL (1993) Chemical hardness. In: Sen K (ed) Structure and bonding, 80th edn. Springer, Berlin, pp 27–43Google Scholar
  9. 9.
    Ayers PW (2001) Theor Chem Acc 106:271–279CrossRefGoogle Scholar
  10. 10.
    Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010–2018CrossRefGoogle Scholar
  11. 11.
    Zhan C-G, Nichols JA, Dixon DA (2003) J Phys Chem A 107:4184–4195CrossRefGoogle Scholar
  12. 12.
    Ng C-Y (2014) Annu Rev Phys Chem 65:197–224CrossRefGoogle Scholar
  13. 13.
    Carlson TA (1975) Photoelectron and auger spectroscopy. Plenum Press, New YorkCrossRefGoogle Scholar
  14. 14.
    Berkowitz J (2012) Photoabsorption photoionization and photoelectron spectroscopy. Academic Press, CambridgeGoogle Scholar
  15. 15.
    Siegbahn K (1973) Electron spectroscopy for chemical analysis. Springer, NewYorkCrossRefGoogle Scholar
  16. 16.
    Siegbahn K, Nordling C, Johansson G, Hedman J, Hedén PF, Hamrin K, Gelius U, Bergmark T, Werme LO, Manne R, Baer Y (1969) ESCA applied to free molecules. North-Holland Publishing Co., AmsterdamGoogle Scholar
  17. 17.
    Turner DW, Baker C, Baker A, Brundle C (1970) Molecular photoelectron spectroscopy. Wiley, NewYokGoogle Scholar
  18. 18.
    Baker AD, Betteridge D (1972) Photoelectron spectroscopy. Pergamon Press, OxfordGoogle Scholar
  19. 19.
    Eland JHD (1974) Photoelectron spectroscopy. Butterworths, DaytonGoogle Scholar
  20. 20.
    Turner DW (1970) Annu Rev Phys Chem 21:107–128CrossRefGoogle Scholar
  21. 21.
    Worley SD (1971) Chem Rev 71:295–314CrossRefGoogle Scholar
  22. 22.
    Müller-Dethlefs K, Schlag EW (1998) Angew Chem Int Ed 37:1346–1374CrossRefGoogle Scholar
  23. 23.
    Neumark DM (2001) Annu Rev Phys Chem 52:255–277CrossRefGoogle Scholar
  24. 24.
    Stolow A, Bragg AE, Neumark DM (2004) Chem Rev 104:1719–1758CrossRefGoogle Scholar
  25. 25.
    Ng C-Y (1991) Vacuum ultraviolet photoionization and photodissociation of molecules and clusters. World Scientific, SingaporeCrossRefGoogle Scholar
  26. 26.
    Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S (1981) Handbook Of HeI photoelectron spectra of fundamental organic molecules: ionization energies, ab initio assignments, and valence electronic structure for 200 molecules. Japan Scientific Societies Press, TokyoGoogle Scholar
  27. 27.
    Nakatsuji H, Hirao K (1977) Chem Phys Lett 47:569–571CrossRefGoogle Scholar
  28. 28.
    Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053–2065CrossRefGoogle Scholar
  29. 29.
    Nakatsuji H (1978) Chem Phys Lett 59:362–364CrossRefGoogle Scholar
  30. 30.
    Nakatsuji H (1979) Chem Phys Lett 67:334–342CrossRefGoogle Scholar
  31. 31.
    Nakatsuji H (1991) Chem Phys Lett 177:331–337CrossRefGoogle Scholar
  32. 32.
    Nakatsuji H (1997) Computational chemistry: reviews of current trends, 2nd edn. World Scientific, Singapore, pp 62–124CrossRefGoogle Scholar
  33. 33.
    Bartlett RJ (2012) Wiley Interdiscip Rev Comput Mol Sci 2:126–138CrossRefGoogle Scholar
  34. 34.
    Bartlett RJ, Stanton JF (2007) Reviews in computational chemistry. Wiley, NewYork, pp 64–169Google Scholar
  35. 35.
    Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291–352CrossRefGoogle Scholar
  36. 36.
    Krylov AI (2008) Annu Rev Phys Chem 59:433–462CrossRefGoogle Scholar
  37. 37.
    Nakatsuji H (1979) Chem Phys Lett 67:329–333CrossRefGoogle Scholar
  38. 38.
    Buenker RJ, Peyerimhoff SD (1974) Theor Chim Acta 35:33–58CrossRefGoogle Scholar
  39. 39.
    Heully J, Malrieu J, Nebot-Gil I, Sanchez-Marin J (1996) Chem Phys Lett 256:589–594CrossRefGoogle Scholar
  40. 40.
    Miralles J, Castell O, Caballol R, Malrieu J-P (1993) Chem Phys 172:33–43CrossRefGoogle Scholar
  41. 41.
    Calzado CJ, Malrieu J-P, Cabrero J, Caballol RJ (2000) J Phys Chem A 104:11636–11643CrossRefGoogle Scholar
  42. 42.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09 revision D.01. Gaussian Inc., Wallingford, CTGoogle Scholar
  43. 43.
    Stanton JF, Gauss J (1994) J Chem Phys 101:8938–8944CrossRefGoogle Scholar
  44. 44.
    Nooijen M, Bartlett RJ (1995) J Chem Phys 102:3629–3647CrossRefGoogle Scholar
  45. 45.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  46. 46.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  48. 48.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294–301CrossRefGoogle Scholar
  49. 49.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  50. 50.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  51. 51.
    Woon DE, Dunning TH (1993) J Chem Phys 98:1358–1371CrossRefGoogle Scholar
  52. 52.
    Davidson ER (1996) Chem Phys Lett 260:514–518CrossRefGoogle Scholar
  53. 53.
    Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244–9253CrossRefGoogle Scholar
  54. 54.
    Dunning TH (1970) J Chem Phys 53:2823–2833CrossRefGoogle Scholar
  55. 55.
    Dunning TH, Hay PJ (1977) Methods of electronic structure theory. In: Schaefer HF (ed) Modern theoretical chemistry, 3rd edn. Springer, NewYork, pp 1–27Google Scholar
  56. 56.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  57. 57.
    Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639–9646CrossRefGoogle Scholar
  58. 58.
    Corzo HH, Galano A, Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2015) J Phys Chem A 119:8813–8821CrossRefGoogle Scholar
  59. 59.
    Nakashima H, Honda Y, Shida T, Nakatsuji H (2015) Mol Phys 113:1728–1739CrossRefGoogle Scholar
  60. 60.
    Hasegawa J, Bureekaew S, Nakatsuji H (2007) J Photochem Photobiol A 189:205–210CrossRefGoogle Scholar
  61. 61.
    Miyahara T, Nakatsuji H (2015) J Phys Chem A 119:8269–8278CrossRefGoogle Scholar
  62. 62.
    Farrokhpour H, Fathi F (2011) J Comput Chem 32:2479–2491CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • H. H. Corzo
    • 1
  • Jared M. Krosser
    • 1
  • Annia Galano
    • 2
  • J. V. Ortiz
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryAuburn UniversityAuburnUSA
  2. 2.Departamento de QuímicaUniversidad Autónoma Metropolitana—IztapalapaMexicoMexico

Personalised recommendations