Advertisement

Theoretical Chemistry Accounts

, 135:216 | Cite as

Structure and bonding in WC n (n = 2–5) clusters

  • Elizabeth FlórezEmail author
  • Gabriel Merino
  • José Luis Cabellos
  • Franklin Ferraro
  • Albeiro Restrepo
  • C. Z. HadadEmail author
Regular Article

Abstract

Stochastic explorations of the configurational spaces for WC n (n = 2–5) clusters lead to densely populated spin states at each molecularity. We found 8, 16, 42, and 68 well-defined minima for n = 2, 3, 4, 5, respectively, in spin states ranging from singlets to quintuplets. The lowest energy isomers are triplets in all cases, except for n = 2 where there is competition between a quintuplet and a triplet state for the global minimum. The transition from planar to 3D structural preferences occurs between n = 4 and n = 5. For the global minima, the structures may be considered as the result of the interaction between two fragments: a tungsten cation and a covalently bonded anionic carbon chain. We found that spin–orbit (SO) effects reduce energy differences among isomers. Likewise, SO effects diminish as a function of the carbon content in the clusters to the point that for n = 5 they become negligible.

Keywords

Tungsten–carbon clusters Potential energy surfaces Stochastic explorations Nature of W–C bonding Carbon content increase Spin–orbit effects 

Notes

Acknowledgments

Combined funding for this work from University of Antioquia via “Estrategia de Sostenibilidad” and CODI Project 10170 is gracefully acknowledged. F.F. is grateful to “El Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas”, Project No. 211665842965.

Supplementary material

214_2016_1979_MOESM1_ESM.pdf (423 kb)
Electronic supplementary material The online version of this article (doi:) contains supplementary material (Tables 1SI–3SI; Cartesian coordinates for all structures reported in the paper at PBE0/def2-TZVP level of theory; Cartesian coordinates for the global minima, reoptimized using the B3LYP/def2-TZVP model chemistry; and Cartesian coordinates for the first 2 most stable WC2 structures (quintuplet and triplet) reoptimized at CCSD/def2-TZVP level of theory), which is available to authorized users. (PDF 423 kb)

References

  1. 1.
    Ham DJ, Lee JS (2009) Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2:873–899CrossRefGoogle Scholar
  2. 2.
    Hoffmann R (2002) Carbides. Am Sci 90:318–320CrossRefGoogle Scholar
  3. 3.
    Rempel AA, Würschum R, Schaefer HE (2000) Atomic defects in hexagonal tungsten carbide studied by positron annihilation. Phys Rev B 61:5945–5948CrossRefGoogle Scholar
  4. 4.
    Brillo J, Sur R, Kuhlenbeck H, Freund HJ (1998) Interaction of CO and NO with WC (0001). Surf Sci 397:137–144CrossRefGoogle Scholar
  5. 5.
    Hugosson HW, Engqvist H (2003) The connection between the electronic structure and the properties of binderless tungsten carbides. Int J Refract Metal Hard Mater 21:55–61CrossRefGoogle Scholar
  6. 6.
    Lin J-F, Pitkänen O, Mäklin J, Puskas R, Kukovecz A, Dombovari A, Totha G, Kordas K (2015) Synthesis of tungsten carbide and tungsten disulfide on vertically aligned multi-walled carbon nanotube forests and their application as non-Pt electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14609–14616CrossRefGoogle Scholar
  7. 7.
    Garcia-Esparza AT, Cha D, Ou Y, Kubota J, Domen K, Takanabe K (2013) Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting. ChemSusChem 6:168–181CrossRefGoogle Scholar
  8. 8.
    Yan Q, Lu Y, To F, Lib Y, Yu F (2015) Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas. Catal Sci Technol 5:3270–3280CrossRefGoogle Scholar
  9. 9.
    Li P, Liu Z, Cui L, Zhai F, Wan Q, Li Z (2014) Tungsten carbide synthesized by low-temperature combustion as gas diffusion electrode catalyst. Int J Hydrog Energy 39:10911–10920CrossRefGoogle Scholar
  10. 10.
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalyst. Angew Chem Int Ed 47:8510–8513CrossRefGoogle Scholar
  11. 11.
    Welch EJ, Crawford NRM, Bergman RG, Long JR (2003) New routes to transition metal-carbido species: synthesis and characterization of the carbon-centered trigonal prismatic clusters. J Am Chem Soc 125:11464–11465CrossRefGoogle Scholar
  12. 12.
    Takeno T, Miki H, Takagi T, Onodera H (2006) Electrically conductive properties of tungsten-containing diamond-like carbon films. Diam Relat Mater 15:1902–1905CrossRefGoogle Scholar
  13. 13.
    Scharf TW, Romanes MC, Mahdak KC, Hwang JY, Banerjee R, Evans RD, Doll GL (2008) Atomic-scale structure and composition of tungsten carbide reinforced diamondlike carbon films. Appl Phys Lett 93:151909–151911CrossRefGoogle Scholar
  14. 14.
    Wen J, Li Y, Meng X, Yin G, Yao Y (2015) Fabrication of tungsten carbide nanoparticles from refluxing derived precursor. J Wuhan Univ Technol Mater Sci Ed 30:231–234CrossRefGoogle Scholar
  15. 15.
    Porrati F, Sachser R, Strauss M, Andrusenko I, Gorelik T, Kolb U, Bayarjargal L, Winkler B, Huth M (2010) Artificial granularity in two-dimensional arrays of nanodots fabricated by focused-electron-beam-induced deposition. Nanotechnology 21(37):375302. doi: 10.1088/0957-4484/21/37/375302 CrossRefGoogle Scholar
  16. 16.
    Yamaguchi W (2010) δ and σ vs. π conflicting aromatic pentagonal ring of tungsten with a planar pentacoordinate carbon at the ring center. Int J Quantum Chem 110:1086–1091CrossRefGoogle Scholar
  17. 17.
    Peppernick SJ, Gunaratne KDD, Castleman AW Jr (2010) Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts. Proc Natl Acad Sci USA 107:975–980CrossRefGoogle Scholar
  18. 18.
    Ross M, Castlemann A (2012) Ultrafast ionization and subsequent coulomb explosion of zirconium oxide and tungsten carbide “superatomic” cluster species and comparison to group 10 metals. New J Chem 36:2253–2259CrossRefGoogle Scholar
  19. 19.
    Balasubramanian K (2000) Spectroscopic constants and potential energy curves of tungsten carbide. J Chem Phys 112:7425–7436CrossRefGoogle Scholar
  20. 20.
    Dai D, Balasubramanian K (2000) Electronic states and potential energy surfaces of WC2. J Phys Chem A 104:1325–1331CrossRefGoogle Scholar
  21. 21.
    Dem’yanenko AV, Puretzky AA (1990) Formation of gaseous microparticles by ultraviolet laser excitation of metal carbonyls. Sov J Quantum Electron 20:1437–1438CrossRefGoogle Scholar
  22. 22.
    Li X, Liu S, Chen W, Wang L (1999) The electronic structure of MoC and WC by anion photoelectron spectroscopy. J Chem Phys 111:2464–2469CrossRefGoogle Scholar
  23. 23.
    Zavodinsky VG (2010) Small tungsten carbide nanoparticles: simulation of structure, energetics, and tensile strength. Int J Refract Met Hard Mater 28:446–450CrossRefGoogle Scholar
  24. 24.
    Xi Y, Huang L, Forreyc RC, Cheng H (2014) Interactions between hydrogen and tungsten carbide: a first principles study. RSC Adv 4:39912–39919CrossRefGoogle Scholar
  25. 25.
    http://www.iter.org. Accessed 18 Jan 2016
  26. 26.
    Ashikawa N, Asakura N, Fukumoto M, Hayashi T, Ueda Y, Muroga T (2013) Characteristics of tungsten and carbon dusts in JT-60U and evaluation of hydrogen isotope retention. J Nucl Mater 438:S664–S667CrossRefGoogle Scholar
  27. 27.
    Airila M, Björkas C, Lasa A, Meinander A, Nordlund K, Vörtler K (2013) Sputtering of Be/C/W compounds in molecular dynamics and ERO simulation. J Nucl Mater 438:S589–S593CrossRefGoogle Scholar
  28. 28.
    Bizyukov I, Krieger K, Lee H, Schmid K, Haasz A, Davis J (2013) An overview of sputtering-related processes occurring at mixed surfaces formed by simultaneous C+ and D+ irradiation of W. J Nucl Mater 427:401–410CrossRefGoogle Scholar
  29. 29.
    Khripunova BI, Koidana VS, Ryazanova AI, Gureev VM, Kornienkoa SN, Latushkina ST, Rupysheva AS, Semenova EV, Kulikauskasb VS, Zatekin VV (2015) Study of tungsten as a plasma-facing material for a fusion reactor. Phys Procedia 71:63–67CrossRefGoogle Scholar
  30. 30.
    Kirschnerb A, Matveevb D, Borodinb D, Airilac M, Brezinsekb S, Grothd M, Wiesenb S, Widdowsone A, Bealf J, Esserb HG, Likonenc J, Bekrisg N, Dingh R, JET-EFDA Contributors (2015) Modelling of the material transport and layer formation in the divertor of JET: comparison of ITER-like wall with full carbon wall conditions. J Nucl Mater 463:116–122CrossRefGoogle Scholar
  31. 31.
    Guillemaut C, Pitts RA, Kukushkin AS, Gunn JP, Bucalossi J, Arnoux G, Belo P, Brezinsek S, Brix M, Corrigan G, Devaux S, Flanagan J, Groth M, Harting D, Huber A, Jachmich S, Kruezi U, Lehnen M, Marchetto C, Marsen S, Meigs AG, Meyer O, Stamp M, Strachan JD, Wiesen S, Wischmeier M, Contributors JETEFDA (2014) Influence of atomic physics on EDGE2D-EIRENE simulations of JET divertor detachment with carbon and beryllium/tungsten plasma-facing components. Nucl Fusion 54:093012CrossRefGoogle Scholar
  32. 32.
    Hadad CZ, Flórez E, Merino G, Cabellos JL, Ferraro F, Restrepo A (2014) Potential energy surfaces of WC6 clusters in different spin states. J Phys Chem A 118:5762–5768Google Scholar
  33. 33.
    Pérez J, Restrepo A (2008) ASCEC V-02: Annealing Simulado con Energía Cuántica. Property, development and implementation: Grupo de Química-Física Teórica. Instituto de Química, Universidad de Antioquia, MedellínGoogle Scholar
  34. 34.
    Pérez J, Hadad CZ, Restrepo A (2008) Structural studies of the water tetramer. Int J Quantum Chem 108:1653–1659CrossRefGoogle Scholar
  35. 35.
    Pérez J, Flórez E, Hadad CZ, Fuentealba P, Restrepo A (2008) Stochastic search of the quantum conformational space of small lithium and bimetallic lithium-sodium clusters. J Phys Chem A 112:5749–5755CrossRefGoogle Scholar
  36. 36.
    Ibargüen C, Guerra D, Hadad CZ, Restrepo A (2014) Very weak interactions: structures, energies and bonding in the tetramers and pentamers of hydrogen sulfide. RSC Adv 4:58217–58225CrossRefGoogle Scholar
  37. 37.
    David J, Guerra D, Hadad CZ, Restrepo A (2010) Structure and reactivity of the 1Au6Pt clusters. J Phys Chem A 114:10726–10731CrossRefGoogle Scholar
  38. 38.
    Hadad CZ, Restrepo A, Jenkins S, Ramírez F, David J (2013) Hydrophobic meddling in small water clusters. Theor Chem Acc 132:1376–1387CrossRefGoogle Scholar
  39. 39.
    Gonzalez J, Florez E, Romero J, Reyes A, Restrepo A (2013) Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks. J Mol Model 19:1763–1777CrossRefGoogle Scholar
  40. 40.
    Zapata-Escobar A, Manrique-Moreno M, Guerra D, Hadad CZ, Restrepo A (2014) A combined experimental and computational study of the molecular interactions between anionic ibuprofen and water. J Chem Phys 140(18):184312. doi: 10.1063/1.4874258 CrossRefGoogle Scholar
  41. 41.
    Ferraro F, Pérez-Torres JF, Hadad CZ (2015) Selective catalytic activation of acetylene by a neutral gold cluster of experimentally known gas-phase geometry. J Phys Chem C 119:7755–7764CrossRefGoogle Scholar
  42. 42.
    Hadad CZ, Jenkins S, Flórez E (2015) Unusual solvation through both p-orbital lobes of a carbene carbon. J Chem Phys 142:094302(1-9)CrossRefGoogle Scholar
  43. 43.
    Saunders M (2004) Stochastic search for isomers on a quantum mechanical surface. J Comput Chem 25:621–626CrossRefGoogle Scholar
  44. 44.
    Cabellos J, Ortiz-Chi F, Ramírez A, Merino G (2013) Bilatu V-1.0. Cinvestav, MéridaGoogle Scholar
  45. 45.
    Ramirez-Manzanares A, Peña J, Azpiroz JM, Merino G (2015) A hierarchical algorithm for molecular similarity (H-FORMS). J Comput Chem 36:1456–1466CrossRefGoogle Scholar
  46. 46.
    Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  47. 47.
    ADF2012, SCM, Theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com
  48. 48.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian, Inc, WallingfordGoogle Scholar
  49. 49.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohman JA, Morales CM, Landis CR, Weinhold F (2013) NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elizabeth Flórez
    • 1
    Email author
  • Gabriel Merino
    • 2
  • José Luis Cabellos
    • 2
  • Franklin Ferraro
    • 3
  • Albeiro Restrepo
    • 4
  • C. Z. Hadad
    • 4
    Email author
  1. 1.Departamento de Ciencias BásicasUniversidad de MedellínMedellínColombia
  2. 2.Departamento de Física AplicadaCentro de Investigación y de Estudios Avanzados, Unidad MéridaMéridaMexico
  3. 3.Departamento de Ciencias BásicasFundación Universitaria Luis AmigóMedellínColombia
  4. 4.Instituto de QuímicaUniversidad de Antioquia UdeAMedellínColombia

Personalised recommendations