Skip to main content

The E = E[Nv] functional and the linear response function: a conceptual DFT viewpoint


The energy (E) versus number of electrons (N) and external potential (v) functional E = E[Nv], which has proved to be of fundamental importance in conceptual density functional theory through the response functions it generates, has been examined concentrating on the concavity of the E = E[v] functional as opposed to the convexity of the E = E(N) function. The concavity of the E = E[v] functional is reflected in negative values of the diagonal elements of the linear response function \(\chi ({\mathbf{r}},{\mathbf{r}}')\) comprising the second functional derivative of E with respect to \(v({\mathbf{r}})\), whereas no sign can be retrieved for the off-diagonal elements. These findings are in agreement with recent computational studies in extracting the chemical content of the linear response function. The results for the diagonal elements can easily be interpreted in terms of electron depletion from regions where the potential is increased and are easily retrieved via the independent particle model expression and in agreement with the diagonal elements of the most general expression for the linear response function. These concavity-related issues are put in contrast with the positive \((\partial ^2E/\partial N^2)_v\) derivative, resulting from the convexity of the E(N) function, in line with the positivity of the chemical hardness as resulting from the I versus A (ionization vs. electron affinity) ratio. The first-order derivative \((\delta E/\delta v({\mathbf{r}}))_N\) is discussed within an iso-electronic atom series for which it is shown in detail that the potentials can be ordered univocally, through their Z-dependence. The sign of the slope of the E = E[v] curve is in agreement with the positivity of \(\rho ({\mathbf{r}})\). The result for the E = E[v] functional is put in contrast with the negative \((\partial E/\partial N)_v\) derivative (identified as minus the electronegativity) for the E = E(N) function retrieved on the basis of experimental and theoretical data on ionization energies and electron affinities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  2. 2.

    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. International series of monographs on chemistryOxford University Press, New York

    Google Scholar 

  3. 3.

    Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  4. 4.

    Becke AD (1993) J Chem Phys 98(7):5648

    CAS  Article  Google Scholar 

  5. 5.

    Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105(22):9982

    CAS  Article  Google Scholar 

  6. 6.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Article  Google Scholar 

  7. 7.

    Koch W, Holthausen M (2001) A chemists guide to density functional theory, 2nd edn. Wiley, London

    Book  Google Scholar 

  8. 8.

    Yang W (2014) J Chem Phys 140(18):18A101

    Article  Google Scholar 

  9. 9.

    Parr RG, Yang W (1995) Ann Rev Phys Chem 46:701

    CAS  Article  Google Scholar 

  10. 10.

    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103(5):1793

    CAS  Article  Google Scholar 

  11. 11.

    De Proft F, Geerlings P (2001) Chem Rev 101:1451

    Article  Google Scholar 

  12. 12.

    Chermette H (1999) J Comput Chem 20(1):129

    CAS  Article  Google Scholar 

  13. 13.

    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101(5):520

    CAS  Article  Google Scholar 

  14. 14.

    Gázquez JL (2008) J Mex Chem Soc 52:3

    Google Scholar 

  15. 15.

    Chattaraj PK (ed) (2009) Chemical reactivity theory. A density functional view. CRC Press, Boca Raton

    Google Scholar 

  16. 16.

    Liu SB (2009) Acta Phys Chim Sin 25(3):590

    CAS  Google Scholar 

  17. 17.

    Geerlings P, Ayers PW, Toro-Labbé A, Chattaraj PK, De Proft F (2012) Acc Chem Res 45(5):683

    CAS  Article  Google Scholar 

  18. 18.

    Parr RG, Szentply LV, Liu S (1999) J Am Chem Soc 121(9):1922

    CAS  Article  Google Scholar 

  19. 19.

    Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106(6):2065

    CAS  Article  Google Scholar 

  20. 20.

    Parr R, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    CAS  Article  Google Scholar 

  21. 21.

    Parr RG, Yang W (1984) J Am Chem Soc 106(14):4049

    CAS  Article  Google Scholar 

  22. 22.

    Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028

    CAS  Article  Google Scholar 

  23. 23.

    Morell C, Grand A, Toro-Labbé A (2005) J Phys Chem A 109(1):205

    CAS  Article  Google Scholar 

  24. 24.

    Savin A, Colonna F, Allavena M (2001) J Chem Phys 115(15):6827

    CAS  Article  Google Scholar 

  25. 25.

    Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    CAS  Article  Google Scholar 

  26. 26.

    Gross E, Kohn W (1990) Density functional theory of many-fermion systems. Advances in quantum chemistry. Academic Press, London

    Google Scholar 

  27. 27.

    Casida ME (1995) Recent advances in density functional methods. World Scientific Pub. Co. Inc., Singapore

    Google Scholar 

  28. 28.

    Ayers PW, De Proft F, Borgoo A, Geerlings P (2007) J Chem Phys 126(22):224107

    Article  Google Scholar 

  29. 29.

    Sablon N, De Proft F, Ayers PW, Geerlings P (2007) J Chem Phys 126(22):224108

    Article  Google Scholar 

  30. 30.

    Yang W, Cohen AJ, De Proft F, Geerlings P (2012) J Chem Phys 136(14):144110

    Article  Google Scholar 

  31. 31.

    Fias S, Boisdenghien Z, De Proft F, Geerlings P (2014) J Chem Phys 141(18):184107

    Article  Google Scholar 

  32. 32.

    Boisdenghien Z, Fias S, Pieve FD, De Proft F, Geerlings P (2015) Mol. Phys. 113(13–14):1890

    CAS  Article  Google Scholar 

  33. 33.

    Boisdenghien Z, Van Alsenoy C, De Proft F, Geerlings P (2013) J Chem Theory Comput 9(2):1007

    CAS  Article  Google Scholar 

  34. 34.

    Boisdenghien Z, Fias S, Van Alsenoy C, De Proft F, Geerlings P (2014) Phys Chem Chem Phys 16:14614

    CAS  Article  Google Scholar 

  35. 35.

    Sablon N, De Proft F, Geerlings P (2010) Chem Phys Lett 498(1–3):192

    CAS  Article  Google Scholar 

  36. 36.

    Sablon N, De Proft F, Geerlings P (2010) J Phys Chem Lett 1(8):1228

    CAS  Article  Google Scholar 

  37. 37.

    Sablon N, De Proft F, Sola M, Geerlings P (2012) Phys Chem Chem Phys 14:3960

    CAS  Article  Google Scholar 

  38. 38.

    Fias S, Geerlings P, Ayers P, De Proft F (2013) Phys Chem Chem Phys 15:2882

    CAS  Article  Google Scholar 

  39. 39.

    Geerlings P, Fias S, Boisdenghien Z, De Proft F (2014) Chem Soc Rev 43:4989

    CAS  Article  Google Scholar 

  40. 40.

    Coulson CA, Longuet-Higgins HC (1947) Proc R Soc Lond 191:39

    CAS  Article  Google Scholar 

  41. 41.

    Coulson CA, Longuet-Higgins HC (1947) Proc R Soc Lond 192:16

    CAS  Article  Google Scholar 

  42. 42.

    Stuyver T, Fias S, De Proft F, Fowler PW, Geerlings P (2015) J Chem Phys 142(9):094103

    CAS  Article  Google Scholar 

  43. 43.

    Stuyver T, Fias S, De Proft F, Geerlings P (2015) Chem Phys Lett 630:51

    CAS  Article  Google Scholar 

  44. 44.

    Stuyver T, Fias S, De Proft F, Geerlings P (2015) J Phys Chem C 119(47):26390

    CAS  Article  Google Scholar 

  45. 45.

    Eschrig H (1996) The fundamentals of density functional theory. Vieweg+Teubner Verlag, Stuttgart, TEUBNER-TEXTE zur Physik

  46. 46.

    Perdew J, Parr R, Levy M, Balduz J Jr (1982) Phys Rev Lett 49:1691

    CAS  Article  Google Scholar 

  47. 47.

    Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2015) J Chem Phys 143(15):154103

    Article  Google Scholar 

  48. 48.

    Lieb EH (1983) Int J Quantum Chem 24(3):243

    CAS  Article  Google Scholar 

  49. 49.

    Helgaker T (2014) Density-functional theory. Presentation (2014). In: The 13th sostrup summer school on quantum chemistry and molecular properties

  50. 50.

    Helgaker T (2015) Differentiable but exact formulation of density-functional theory. Presentation (2015). Formal and practical aspects of electronic structure simulations with density functional theory, Vrije Universiteit, Amsterdam

  51. 51.

    Kvaal S, Ekström U, Teale AM, Helgaker T (2014) J Chem Phys 140(18):18A518

    Article  Google Scholar 

  52. 52.

    Atkins P, Friedman R (1997) Molecular quantum mechanics. Oxford University Press, London

    Google Scholar 

  53. 53.

    Liu S, Li T, Ayers PW (2009) J Chem Phys 131(11):114106

    Article  Google Scholar 

  54. 54.

    Sablon N, De Proft F, Ayers PW, Geerlings P (2010) J Chem Theory Comput 6(12):3671

    CAS  Article  Google Scholar 

  55. 55.

    Cardenas C, Ayers P, De Proft F, Tozer DJ, Geerlings P (2011) Phys Chem Chem Phys 13:2285

    CAS  Article  Google Scholar 

  56. 56.

    Hellmann H (1937) Einführung in die Quantenchemie (Leipzig F. Deuticke)

  57. 57.

    Feynman RP (1939) Phys Rev 56:340

    CAS  Article  Google Scholar 

  58. 58.

    Foldy LL (1951) Phys Rev 83:397

    CAS  Article  Google Scholar 

  59. 59.

    Politzer P, Parr RG (1974) J Chem Phys 61(10):4258

    CAS  Article  Google Scholar 

  60. 60.

    Levy M (1978) J Chem Phys 68(11):5298

    CAS  Article  Google Scholar 

  61. 61.

    Pyykkö P (2011) Phys Chem Chem Phys 13:161

    Article  Google Scholar 

  62. 62.

    Pyykkö P (2012) Chem Rev 112(1):371

    Article  Google Scholar 

  63. 63.

    Wilson EB (1962) J Chem Phys 36(8):2232

    CAS  Article  Google Scholar 

Download references


Stijn Fias acknowledges the Research Foundation Flanders(FWO) for financial support for his postdoctoral research in the General Chemistry Group (Algemene Chemie, ALGC). P.G. and F.D.P. wish to acknowledge the VUB for a Strategic Research Program from which a research position to Zino Boisenghien could be financed. The authors want to thank an anonymous reviewer for her/his constructive remarks. The authors want to dedicate this account to Professor Alberto Vela at the occasion of his 60th birthday. Alberto has been a fine colleague and friend for many years, a true companion in the search for what DFT has to offer to chemists.

Author information



Corresponding author

Correspondence to Paul Geerlings.

Additional information

Published as part of the special collection of articles “Festschrift in honour of A. Vela”.

Appendix: The energy of iso-electronic atoms

Appendix: The energy of iso-electronic atoms

Consider a neutral many electron atom, with nuclear charge Z and number of electrons N (\(Z=N\)). By virtue of the Hellman–Feynman theorem [56, 57], the derivative of the energy as a function of Z can be written as

$$\frac{\partial E}{\partial Z} = \left\langle \varPsi \left| \frac{\partial H(Z)}{\partial Z}\right| \varPsi \right\rangle$$

which reduces in the case of an atom to

$$\frac{\partial E}{\partial Z} = -\int \rho ({\mathbf{r}};Z)\frac{1}{r}{\text {d}}{\mathbf{r}}.$$

As compared to a reference state \(E(0)=0\) an atom with nuclear charge zero, implying that all electrons are at infinity [63], the energy \(E=E(Z)\) can be written as

$$\begin{aligned} E&= \int _0^Z \left( \frac{\partial E}{\partial Z}\right) {\text {d}}Z \\&= E(Z)-E(0) \\&=-\int _0^Z\int \rho ({\mathbf{r}},Z)\frac{1}{r}{\text {d}}{\mathbf{r}}{\text {d}}Z. \end{aligned}$$

retrieving Foldy’s result for the exact non-relativistic energy of a ground-state atom with atomic number Z and N electrons [58]. (In fact, this zero value as Z-reference could be replaced by the \(Z_{{\text {min}}}\) in Fig. 3. This choice, however, does not alter the remaining part and the conclusion of the discussion.)

Consider now two iso-electronic systems with \(Z=Z_1\) and \(Z=Z_2\) where we choose \(Z_2>Z_1\). One then has

$$E(Z_2)-E(Z_1) = -\int _{Z_1}^{Z_2}\int \rho ({\mathbf{r}},Z)\frac{1}{r}{\text {d}}{\mathbf{r}}{\text {d}}Z.$$

Due to the spherical nature of the electron distribution assumed throughout, one gets

$$\begin{aligned} E(Z_2)-E(Z_1)&= -\int _{Z_1}^{Z_2}\int \rho (r,Z)\frac{1}{r} r^2\sin \theta {\text {d}} \theta {\text {d}}\phi {\text {d}}r{\text {d}}Z \\&= -4\pi \int _{Z_1}^{Z_2}\int _0^\infty \rho (r,Z)r{\text {d}}r{\text {d}}Z \\&= -4\pi \int _0^\infty r{\text {d}}r\int _{Z_1}^{Z_2}\rho (r,Z){\text {d}}Z. \end{aligned}$$

Denoting the integral over \({\text {d}}Z\) as \(f(r;Z_1,Z_2)\), we obtain

$$E(Z_2) - E(Z_1) = -4\pi \int _0^\infty f(r;Z_1,Z_2)r{\text {d}}r.$$

As it cannot be that for all r values the density \(\rho (r,Z)=0\), \(f(r;Z_1,Z_2)\) will be positive for a number of r values so that the integrand of the integral is positive. Denoting this integral as \(F(Z_1,Z_2)\), we obtain

$$E(Z_2)-E(Z_1) = -4\pi F(Z_1,Z_2)<0$$

or \(E(Z_2)<E(Z_1)\), yielding the result that upon increasing Z, the energy E decreases (i.e. becomes more negative).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geerlings, P., Boisdenghien, Z., Proft, F.D. et al. The E = E[Nv] functional and the linear response function: a conceptual DFT viewpoint. Theor Chem Acc 135, 213 (2016).

Download citation


  • Conceptual DFT
  • Linear response function
  • Concavity of the E[v] functional