Skip to main content

Advertisement

Log in

A qualitative model to identify non-radiative decay channels: the spiropyran as case study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A new descriptor tool enabling to qualitatively identify excited-state potential energy regions with high decay probability is here disclosed and applied to analyze a photoinduced ring-opening reaction already well characterized from the experimental and theoretical point of view. The analysis based on such descriptor allows one to highlight a high probability of excited-state deactivation within the Franck–Condon region, in agreement with experiments, and to qualitatively indentify the main mechanisms providing efficient pathways of photoreactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Irie M, Fukaminato T, Sasaki T et al (2002) Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420:759–760

    Article  CAS  Google Scholar 

  2. Prager S, Burghardt I, Dreuw A (2014) Ultrafast CSpiro–O dissociation via a conical intersection drives spiropyran to merocyanine photoswitching. J Phys Chem A 118:1339–1349

    Article  CAS  Google Scholar 

  3. Fukaminato T (2011) Single-molecule fluorescence photoswitching: design and synthesis of photoswitchable fluorescent molecules. J Photochem Photobiol C Photochem Rev 12:177–208

    Article  CAS  Google Scholar 

  4. Bernardi F, Olivucci M, Robb MA (1996) Potential energy surface crossings in organic photochemistry. Chem Soc Rev 25:321–328

    Article  CAS  Google Scholar 

  5. Bearpark MJ, Bernardi F, Clifford S et al (1996) The azulene S1 state decays via a conical intersection: a CASSCF study with MMVB dynamics. J Am Chem Soc 118:169–175

    Article  CAS  Google Scholar 

  6. Wurzer AJ, Lochbrunner S, Riedle E (2000) Highly localized vibronic wavepackets in large reactive molecules. Appl Phys B Lasers Opt 71:405–409

    Article  CAS  Google Scholar 

  7. Burland DM, Robinson GW (1970) Is the breakdown of the Born–Oppenheimer approximation responsible for internal conversion in large molecules? Proc Natl Acad Sci 66:257–264

    Article  CAS  Google Scholar 

  8. Butler LJ (1998) Chemical reaction dynamics beyond the Born–Oppenheimer approximation. Annu Rev Phys Chem 49:125–171

    Article  CAS  Google Scholar 

  9. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  10. Savarese M, Aliberti A, De Santo I et al (2012) Fluorescence lifetimes and quantum yields of rhodamine derivatives: new insights from theory and experiment. J Phys Chem A 116:7491–7497

    Article  CAS  Google Scholar 

  11. Savarese M, Raucci U, Netti PA et al (2014) Modeling of charge transfer processes to understand photophysical signatures: the case of rhodamine 110. Chem Phys Lett 610:148–152

    Article  Google Scholar 

  12. Savarese M, Raucci U, Adamo C et al (2014) Non-radiative decay paths in rhodamines: new theoretical insights. Phys Chem Chem Phys 16:20681–20688

    Article  CAS  Google Scholar 

  13. Savarese M, Brémond É, Antonov L et al (2015) Computational insights on the excited state proton transfer reactions in azo and azomethine dyes. ChemPhysChem 16:3966–3973

    Article  CAS  Google Scholar 

  14. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506

    Article  Google Scholar 

  15. Adamo C, Le Bahers T, Savarese M et al (2015) Exploring excited states using time dependent density functional theory and density-based indexes. Coord Chem Rev 304–305:166–178

    Article  Google Scholar 

  16. Savarese M, Brémond É, Adamo C et al (2016) Excited state proton transfer and intramolecular charge transfer in 1, 3 diketone molecules: a density functional theory based investigation. ChemPhysChem 17:1530–1538

    Article  CAS  Google Scholar 

  17. Wilbraham L, Savarese M, Rega N et al (2014) Describing excited state intramolecular proton transfer (ESIPT) in dual emissive systems: a density functional theory based analysis. J Phys Chem B 119:2459–2466

    Article  Google Scholar 

  18. Savarese M, Netti PA, Adamo C et al (2013) Exploring the metric of excited state proton transfer reactions. J Phys Chem B 117:16165–16173

    Article  CAS  Google Scholar 

  19. Raucci U, Savarese M, Adamo C et al (2015) Intrinsic and dynamical reaction pathways of an excited state proton transfer. J Phys Chem B 119:2650–2657

    Article  CAS  Google Scholar 

  20. Rini M, Holm A-K, Nibbering ETJ, Fidder H (2003) Ultrafast UV-mid-IR investigation of the ring opening reaction of a photochromic spiropyran. J Am Chem Soc 125:3028–3034

    Article  CAS  Google Scholar 

  21. Ernsting NP (1989) Transient optical absorption spectroscopy of the photochemical spiropyran-merocyanine conversion. Chem Phys Lett 159:526–531

    Article  CAS  Google Scholar 

  22. Ernsting NP, Dick B, Arthen-Engeland T (1990) The primary photochemical reaction step of unsubstituted indolino-spiropyrans. Pure Appl Chem 62:1483–1488

    Article  CAS  Google Scholar 

  23. Liu F, Morokuma K (2013) Multiple pathways for the primary step of the spiropyran photochromic reaction: a CASPT2//CASSCF study. J Am Chem Soc 135:10693–10702

    Article  CAS  Google Scholar 

  24. Liu F, Kurashige Y, Yanai T, Morokuma K (2013) Multireference Ab initio density matrix renormalization group (DMRG)-CASSCF and DMRG-CASPT2 study on the photochromic ring opening of spiropyran. J Chem Theory Comput 9:4462–4469

    Article  CAS  Google Scholar 

  25. Zhai G-H, Yang P, Wu S-M et al (2014) A semiclassical molecular dynamics of the photochromic ring-opening reaction of spiropyran. Chin Chem Lett 25:727–731

    Article  CAS  Google Scholar 

  26. Sheng Y, Leszczynski J, Garcia AA et al (2004) Comprehensive theoretical study of the conversion reactions of spiropyrans: substituent and solvent effects. J Phys Chem B 108:16233–16243

    Article  CAS  Google Scholar 

  27. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  28. Pedone A (2013) Role of solvent on charge transfer in 7-aminocoumarin dyes: new hints from TD-CAM-B3LYP and state specific PCM calculations. J Chem Theory Comput 9:4087–4096

    Article  CAS  Google Scholar 

  29. Guido CA, Jacquemin D, Adamo C, Mennucci B (2015) Electronic excitations in solution: the interplay between state specific approaches and a time-dependent density functional theory description. J Chem Theory Comput 11:5782–5790

    Article  CAS  Google Scholar 

  30. Barbatti M, Aquino AJA, Lischka H et al (2009) Ultrafast internal conversion pathway and mechanism in 2-(2′-hydroxyphenyl) benzothiazole: a case study for excited-state intramolecular proton transfer systems. Phys Chem Chem Phys 11:1406–1415

    Article  CAS  Google Scholar 

  31. Savarese M, Netti PA, Rega N et al (2014) Intermolecular proton shuttling in excited state proton transfer reactions: insights from theory. Phys Chem Chem Phys 16:8661–8666

    Article  CAS  Google Scholar 

  32. Heitler W (1954) The quantum theory of radiation, 3rd edn. Dover Publications, New York

    Google Scholar 

  33. Lax M (1952) The Franck–Condon principle and its application to crystals. J Chem Phys 20:1752–1760

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadia Rega or Ilaria Ciofini.

Additional information

Published as part of the special collection of articles “Health & Energy from the Sun.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savarese, M., Raucci, U., Netti, P.A. et al. A qualitative model to identify non-radiative decay channels: the spiropyran as case study. Theor Chem Acc 135, 211 (2016). https://doi.org/10.1007/s00214-016-1966-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1966-x

Keywords

Navigation