Skip to main content
Log in

Can low-barrier hydrogen bond exist in systems with second row elements? An ab initio path integral molecular dynamics study for deprotonated hydrogen sulfide dimer

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Nuclear quantum effect and thermal effect on deprotonated hydrogen sulfide dimer anion \({\text{H}}_{3} {\text{S}}_{2}^{-}\), composed of a second row element, are widely explored by ab initio on-the-fly path integral molecular dynamics simulation. At low temperature, the hydrogen-bonded proton tends to be diffusively located at the central position between two sulfur atoms, which is the typical characteristic feature of so-called low-barrier hydrogen bond (LBHB). This is the first case of the LBHB systems composed of the second row elements, although the hydrogen-bonded distance in \({\text{H}}_{3} {\text{S}}_{2}^{-}\) (over 3.4 Å) is much longer than the previously reported LBHB composed of first row elements (<2.5 Å). At high temperature, the distance between two sulfur atoms is longer than that at low temperature, and the hydrogen-bonded proton localizes to each sulfur atom. Similar tendency is obtained in the deuterated \({\text{D}}_{3} {\text{S}}_{2}^{-}\) species at all temperature. Analyzing the relationship between the position of the hydrogen-bonded proton and the quantum fluctuation effect of the proton, we elucidate that the LBHB is induced by the quantum tunneling at low temperature, while such trend becomes weak and the character of LBHB vanishes at room temperature for \({\text{H}}_{3} {\text{S}}_{2}^{-}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Topics in physical chemistry. A series of advanced textbooks and monographs. Oxford University Press, New York

    Google Scholar 

  2. Steiner T (2002) Angew Chem Int Ed 41:48

    Article  CAS  Google Scholar 

  3. Perrin CL, Nielson JB (1997) Annu Rev Phys Chem 48:511

    Article  CAS  Google Scholar 

  4. Kohen A, Limbach H-H (2006) Isotope effects in chemistry and biology. CRC Press, Taylor and Francis group, Boca Raton

    Google Scholar 

  5. Emsley J (1980) Chem Soc Rev 9:91

    Article  CAS  Google Scholar 

  6. Gilli G, Gilli P (2000) J Mol Struct 552:1

    Article  CAS  Google Scholar 

  7. Gerlt JA, Kreevoy MM, Cleland WW, Frey PA (1997) Chem Biol 4:259

    Article  CAS  Google Scholar 

  8. Robertson WH, Johnson MA (2003) Annu Rev Phys Chem 54:173

    Article  CAS  Google Scholar 

  9. Robertson WH, Diken EG, Price EA, Shin JW, Johnson MA (2003) Science 299:1367

    Article  CAS  Google Scholar 

  10. Day VW, Hossain A, Kang SO, Powell D, Lushington G, Bowman-James K (2007) J Am Chem Soc 129:8692

    Article  CAS  Google Scholar 

  11. Yamaguchi S, Kamikubo H, Kurihara K, Kuroki R, Niimura N, Shimizu N, Yamazaki Y, Kataoka M (2009) PNAS 106:440

    Article  CAS  Google Scholar 

  12. Schiøtt B, Iversen BB, Madsen GKH, Larsen FK, Bruice TC (1998) PNAS 95:12799

    Article  Google Scholar 

  13. Cleland WW, Kreevoy MM (1994) Science 264:1887

    Article  CAS  Google Scholar 

  14. Ogata Y, Daido M, Kawashima Y, Tachikawa M (2013) Rsc Adv 3:25252

    Article  CAS  Google Scholar 

  15. Kanematsu Y, Tachikawa M (2014) J Chem Phys 141:185101

    Article  Google Scholar 

  16. Tachikawa M, Shiga M (2005) J Am Chem Soc 127:11908

    Article  CAS  Google Scholar 

  17. Ogata Y, Kawashima Y, Takahashi K, Tachikawa M (2014) Theor Chem Acc 134:25252

    Google Scholar 

  18. Ishibashi H, Hayashi A, Shiga M, Tachikawa M (2008) ChemPhysChem 9:383

    Article  CAS  Google Scholar 

  19. Samson CCM, Klopper W (2002) J Mol Struct Theochem 586:201

    Article  CAS  Google Scholar 

  20. McCoy AB, Huang XC, Carter S, Bowman JM (2005) J Chem Phys 123:064317

    Article  Google Scholar 

  21. Yang Y, Kühn O (2008) Z Phys Chem 222:1375

    Article  CAS  Google Scholar 

  22. Asmis KR, Yang YG, Santambrogio G, Brümmer M, Roscioli JR, McCunn LR, Johnson MA, Kühn O (2007) Angew Chem Int Ed 46:8691

    Article  CAS  Google Scholar 

  23. Yang Y, Kühn O, Santambrogio G, Goebbert DJ, Asmis KR (2008) J Chem Phys 129:224302

    Article  CAS  Google Scholar 

  24. Yang YG, Kühn O (2011) Chem Phys Lett 505:1

    Article  CAS  Google Scholar 

  25. Kawashima Y, Tachikawa M (2014) J Chem Theory Comput 10:153

    Article  CAS  Google Scholar 

  26. McDaniel DH, Valleé RE (1963) Inorg Chem 2:996

    Article  CAS  Google Scholar 

  27. Schroeder LW, Ibers JA (1968) Inorg Chem 7:594

    Article  CAS  Google Scholar 

  28. McGaw BL, Ibers JA (1963) J Chem Phys 39:2677

    Article  CAS  Google Scholar 

  29. Blinc R (1958) Nature 182:1016

    Article  CAS  Google Scholar 

  30. McDaniel DH, Evans WG (1966) Inorg Chem 5:2180

    Article  CAS  Google Scholar 

  31. Sabin JR (1971) J Chem Phys 54:4675

    Article  CAS  Google Scholar 

  32. Sabin JR (1971) J Chem Phys 55:5423

    Article  Google Scholar 

  33. Scheiner S (1994) Theochem J Mol Struct 113:65

    Article  CAS  Google Scholar 

  34. Szczęśniak MM, Scheiner S (1982) J Chem Phys 77:4586

    Article  Google Scholar 

  35. Huang XC, Braams BJ, Carter S, Bowman JM (2004) J Am Chem Soc 126:5042

    Article  CAS  Google Scholar 

  36. Tuckerman ME, Marx D, Klein ML, Parrinello M (1997) Science 275:817

    Article  CAS  Google Scholar 

  37. Ceriotti M, Cuny J, Parrinello M, Manolopoulos DE (2013) PNAS 110:15591

    Article  CAS  Google Scholar 

  38. Abu-Dari K, Raymond KN, Freyberg DP (1979) J Am Chem Soc 101:3688

    Article  CAS  Google Scholar 

  39. Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill Inc, New York

    Google Scholar 

  40. Gillan MJ (1990) In: Catlow CRA, Parker SC, Allen MP (eds) The path-integral simulation of quantum systems in computer modeling of fluids polymers and solids. Kluwer Academic Publishers, Bath, p 155

    Chapter  Google Scholar 

  41. Altland A, Simons B (2006) Condensed matter field theory. Cambridge University Press, New York

    Book  Google Scholar 

  42. Coleman S (1985) Aspects of symmetry. Cambridge University Press, New York

    Book  Google Scholar 

  43. Nakamura H, Mil’nikov G (2014) Quantum mechanical tunneling in chemical physics. CRC Press, Boca Raton

    Google Scholar 

  44. Herman MF, Bruskin EJ, Berne BJ (1982) J Chem Phys 76:5150

    Article  CAS  Google Scholar 

  45. Schmidt JR, Tully JC (2007) J Chem Phys 127:094103

    Article  CAS  Google Scholar 

  46. Suzuki K, Tachikawa M, Shiga M (2010) J Chem Phys 132:144108

    Article  Google Scholar 

  47. Tuckerman ME, Berne BJ, Martyna GJ, Klein ML (1993) J Chem Phys 99:2796

    Article  Google Scholar 

  48. Martyna GJ, Hughes A, Tuckerman ME (1999) J Chem Phys 110:3275

    Article  CAS  Google Scholar 

  49. Marx D, Parrinello M (1996) J Chem Phys 104:4077

    Article  CAS  Google Scholar 

  50. Cao J, Berne BJ (1993) J Chem Phys 99:2902

    Article  CAS  Google Scholar 

  51. Cao J, Martyna GJ (1996) J Chem Phys 104:2028

    Article  CAS  Google Scholar 

  52. Shiga M, Tachikawa M, Miura S (2001) J Chem Phys 115:9149

    Article  CAS  Google Scholar 

  53. Makri N, Sim EJ, Makarov DE, Topaler M (1996) PNAS 93:3926

    Article  CAS  Google Scholar 

  54. Benoit M, Marx D, Parrinello M (1998) Nature 392:258

    Article  CAS  Google Scholar 

  55. Suzuki K, Shiga M, Tachikawa M (2008) J Chem Phys 129:144310

    Article  Google Scholar 

  56. Martyna GJ, Klein ML, Tuckerman M (1992) J Chem Phys 97:2635

    Article  Google Scholar 

  57. Kawashima Y, Suzuki K, Tachikawa M (2013) J Phys Chem A 117:5205

    Article  CAS  Google Scholar 

  58. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  59. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  60. Lee CH, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  61. Vahtras O, Almlöf J, Feyereisen MW (1993) Chem Phys Lett 213:514

    Article  CAS  Google Scholar 

  62. Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359

    Article  CAS  Google Scholar 

  63. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    Article  CAS  Google Scholar 

  64. Ahlrichs R, Bär H, Häser H, Horn H, Kölmel C (1989) Chem Phys Lett 208:359

    Google Scholar 

  65. Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision C. 1. Gaussian Inc, Wallingford

    Google Scholar 

  67. McQuarrie DA, Simon JD (1997) Physical chemistry: a molecular approach. University Science Books, Sausalito

    Google Scholar 

  68. Wilson EB Jr, Decius JC, Cross PC (1980) Molecular vibrations: the theory of infrared and Raman vibrational spectra. Dover Publications Inc, New York

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by Grants-in-Aid for Scientific Research (KAKENHI) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant Numbers 26620013, 26102539, and 15KT0067 for MT, and the Strategic Programs for Innovative Research (SPIRE), MEXT, and the Computational Materials Science Initiative (CMSI), Japan. Theoretical calculations were partly performed at the Research Center for Computational Science, Institute for Molecular Science, Japan and Center of Computational Materials Science, Institute for Solid State Physics, The University of Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Tachikawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogata, Y., Kawatsu, T. & Tachikawa, M. Can low-barrier hydrogen bond exist in systems with second row elements? An ab initio path integral molecular dynamics study for deprotonated hydrogen sulfide dimer. Theor Chem Acc 135, 200 (2016). https://doi.org/10.1007/s00214-016-1958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1958-x

Keywords

Navigation