Abstract
Quantum transport and other phenomena are typically modeled by coupling the system of interest to an environment, or bath, held at thermal equilibrium. Realistic bath models are at least as challenging to construct as models for the quantum systems themselves, since they must incorporate many degrees of freedom that interact with the system on a wide range of timescales. Owing to computational limitations, the environment is often modeled with simple functional forms, with a few parameters fit to experiment to yield semi-quantitative results. Growing computational resources have enabled the construction of more realistic bath models from molecular dynamics (MD) simulations. In this paper, we develop a numerical technique to construct these atomistic bath models with better accuracy and decreased cost. We apply a novel signal processing technique, known as super-resolution, combined with a dictionary of physically motivated bath modes to derive spectral densities from MD simulations. Our approach reduces the required simulation time and provides a more accurate spectral density than can be obtained via standard Fourier transform methods. Moreover, the spectral density is provided as a convenient closed-form expression which yields an analytic time-dependent bath kernel. Exciton dynamics of the Fenna–Matthews–Olson light-harvesting complex are simulated with a second-order time-convolutionless master equation, and spectral densities constructed via super-resolution are shown to reproduce the dynamics using only a quarter of the amount of MD data.
Similar content being viewed by others
References
Breuer H-P, Petruccione F (2007) The theory of open quantum systems. Oxford University Press, Oxford
Shenvi N, Schmidt JR, Edwards ST, Tully JC (2008) Phys Rev A 78:022502
Berkelbach TC, Hybertsen MS, Reichman DR (2013) J Chem Phys 138:4102
Berkelbach TC, Hybertsen MS, Reichman DR (2013) J Chem Phys 138:114103
Singh N, Brumer P (2011) Faraday Discuss 153:41
Jang S, Newton MD, Silbey RJ (2007) J Phys Chem B 111:6807
Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A (2008) J Chem Phys 129:174106
Plenio MB, Huelga SF (2008) New J Phys 10:113019
Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik A (2009) New J Phys 11:033003
Cao J, Silbey RJ (2009) J Phys Chem A 113:13825
Ishizaki A, Fleming GR (2009) Proc Natl Acad Sci 106:17255
Ishizaki A, Fleming GR (2011) J Phys Chem B 115:6227
Sarovar M, Ishizaki A, Fleming GR, Whaley KB (2010) Nat Phys 6:462
Abramavicius D, Mukamel S (2010) J Chem Phys 133:064510
Wu J, Liu F, Shen Y, Cao J, Silbey RJ (2010) New J Phys 12:105012
Moix J, Wu J, Huo P, Coker D, Cao J (2011) J Phys Chem Lett 2:3045
Kreisbeck C, Kramer T, Rodríguez M, Hein B (2011) J Chem Theory Comput 7:2166
Skochdopole N, Mazziotti DA (2011) J Phys Chem Lett 2:2989
Ritschel G, Roden J, Strunz WT, Aspuru-Guzik A, Eisfeld A (2011) J Phys Chem Lett 2:2912
Rebentrost P, Aspuru-Guzik A (2011) J Chem Phys 134:101103
Pachón LA, Brumer P (2012) Phys Chem Chem Phys 14:10094
Vlaming SM, Silbey RJ (2012) J Chem Phys 136:055102
Caruso F, Saikin SK, Solano E, Huelga SF, Aspuru-Guzik A, Plenio MB (2012) Phys Rev B 85:125424
Zhu J, Kais S, Rebentrost P, Aspuru-Guzik A (2011) J Phys Chem B 115:1531
Roden J, Eisfeld A, Wolff W, Strunz W (2009) Phys Rev Lett 103:058301
Olbrich C, Kleinekathöfer U (2010) J Phys Chem B 114:12427
Olbrich C, Jansen TLC, Liebers J, Aghtar M, Strümpfer J, Schulten K, Knoester J, Kleinekathöfer U (2011) J Phys Chem B 115:8609
Hein B, Kreisbeck C, Kramer T, Rodríguez M (2012) New J Phys 14:023018
Christensson N, Kauffmann HF, Pullerits T, Mančal T (2012) J Phys Chem B 116:7449
Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB (2013) Nat Phys 9:113
Kreisbeck C, Kramer T (2012) J Phys Chem Lett 3:2828
Valleau S, Eisfeld A, Aspuru-Guzik A (2012) J Chem Phys 137:224103
Tuckerman M (2010) Statistical mechanics: theory and molecular simulation. OUP, Oxford
Runge E, Gross EK (1984) Phys Rev Lett 52:997
Mallat S (2008) A wavelet tour of signal processing, 3rd edn: the sparse way. Academic Press, London
Hu H, Van QN, Mandelshtam VA, Shaka AJ (1998) Reference deconvolution, phase correction, and line listing of NMR spectra by the 1D filter diagonalization method. J Magn Reson 134(1):76–87
Hoch JC, Maciejewski MW, Mobli M, Schuyler AD, Stern AS (2014) Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR. Acc Chem Res 47(2):708–717
Freeman WT, Jones TR, Pasztor EC (2002) IEEE Comput Graph Appl 22:56
Patti AJ, Sezan MI, Murat Tekalp A (1997) IEEE Trans Image Process 6:1064
Elad M, Feuer A (1997) IEEE Trans Image Process 6:1646
Puschmann KG, Kneer F (2005) Astron Astrophys 436:373
Mccutchen CW (1967) J Opt Soc Am 57:1190
Kouame D, Ploquin M (2009) Super-resolution in medical imaging: an illustrative approach through ultrasound. In: IEEE international symposium on biomedical imaging: from nano to macro, 2009. ISBI ’09, pp 249–252
Ma J (2010) IEEE Trans Instrum Meas 59:1600
Donoho DL (2006) IEEE Trans Inf Theory 52:1289
Oka A, Lampe L (2009) A compressed sensing receiver for bursty communication with UWB impulse radio. In: IEEE international conference on ultra-wideband, 2009. ICUWB 2009, pp 279–284
Herman MA, Strohmer T (2009) IEEE Trans Signal Process 57:2275
Qiu C, Lu W, Vaswani N (2009) Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing. In: IEEE international conference on acoustics, speech and signal processing, 2009. ICASSP 2009, pp 393–396
Lustig M, Donoho D, Pauly JM (2007) Magn Reson Med 58:1182
Nagahara M, Quevedo DE, Ostergaard J (2012) Sparse representations for packetized predictive networked control. In: 2012 IEEE 51st annual conference on decision and control (CDC), pp 1362–1367
Tuma T, Rooney S, Hurley P (2009) On the applicability of compressive sampling in fine grained processor performance monitoring. In: 2009 14th IEEE international conference on engineering of complex computer systems. IEEE, pp 210–219
Shabani A, Kosut RL, Mohseni M, Rabitz H, Broome MA, Almeida MP, Fedrizzi A, White AG (2011) Efficient measurement of quantum dynamics via compressive sensing. Phys Rev Lett 106(10):100401
Mishali M, Eldar YC (2010) IEEE J Sel Top Signal Process 4:375
Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG (2008) IEEE Signal Process Mag 25:83
Coulter WK, Hillar CJ, Isley G, Sommer FT (2010) Adaptive compressed sensing — A new class of self-organizing coding models for neuroscience. 2010 IEEE International conference on acoustics, speech and signal processing, Dallas, TX, p 5494–5497
Candès EJ, Fernandez-Granda C (2014) Commun Pure Appl Math 67:906–956
Bioucas-Dias JM, Figueiredo MA (2007) IEEE Trans Image Process 16:2992
Bioucas-Dias JM, Figueiredo MAT (2007) Two-step algorithms for linear inverse problems with non-quadratic regularization. In: IEEE international conference on image processing, 2007. ICIP 2007, pp I–105–I–108
Vulto SIE, de Baat MA, Louwe RJW, Permentier HP, Neef T, Miller M, van Amerongen H, Aartsma TJ (1998) J Phys Chem B 102:9577
Adolphs J, Renger T (2006) Biophys J 91:2778
Chen X, Cao J, Silbey RJ (2013) J Chem Phys 138:224104
Yuen-Zhou J, Krich JJ, Aspuru-Guzik A (2012) J Chem Phys 136:234501
Shim S, Rebentrost P, Valleau SP, Aspuru-Guzik AN (2012) Biophys J 102:649
Kolli A, Nazir A, Olaya-Castro A (2011) J Chem Phys 135:154112
Jang S (2011) J Chem Phys 135:034105
Ishizaki A, Fleming GR (2009) J Chem Phys 130:234111
Tanimura Y, Kubo R (1989) J Phys Soc Jpn 58:101
Kreisbeck C, Kramer T, Rodríguez TM, Hein B (2011) J Chem Theory Comput 7(7):2166–2174
Pereverzev A, Bittner ER (2006) J Chem Phys 125:4906
Timm C (2011) Phys Rev B 83:115416
Ahn D (1994) Phys Rev B 50:8310
Heinz-Peter B, Kappler B, Petruccione F (2000) Decoherence: theoretical, experimental, and conceptual problems. 233
Shabani A, Lidar DA (2005) Phys Rev A 71:020101
Smirne A, Vacchini B (2010) Phys Rev A 82:022110
Kleinekathöfer U (2004) J Chem Phys 121:2505
Berens PH, White SR, Wilson KR (1981) J Chem Phys 75:515
Candes EJ, Romberg J, Tao T (2006) IEEE Trans Inf Theory 52:489
Andrade X, Sanders JN, Aspuru-Guzik A (2012) Proc Natl Acad Sci 109:13928
Sanders JN, Saikin SK, Mostame S, Andrade X, Widom JR, Marcus AH, Aspuru-Guzik A (2012) J Phys Chem Lett 3:2697
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179
Ceccarelli M, Procacci P, Marchi M (2003) J Comput Chem 24:129
Becke AD (1988) Phys Rev A 38:3098
Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200
Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert AT, Slipchenko LV, Levchenko SV, O’Neill DP (2006) Phys Chem Chem Phys 8:3172
Acknowledgments
We acknowledge S. Valleau for useful discussions and computer code. We acknowledge the financial support of Defense Advanced Research Projects Agency Grant N66001-10-1-4063 and the Defense Threat Reduction Agency under Contract No. HDTRA1-10-1-0046. T.M. acknowledges support from the National Science Foundation (NSF) through the Graduate Research Fellowship Program (GRFP). S.B. acknowledges support from the Department of Energy (DoE) through the Computational Sciences Graduate Fellowship (CSGF). J.N.S. acknowledges support from the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. A.A.G. thanks the Corning Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published as part of the special collection of articles “Festschrift in honour of A. Vela”.
Rights and permissions
About this article
Cite this article
Markovich, T., Blau, S.M., Parkhill, J. et al. Accelerating the computation of bath spectral densities with super-resolution. Theor Chem Acc 135, 215 (2016). https://doi.org/10.1007/s00214-016-1954-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-016-1954-1