Skip to main content

Relativistic and electron correlation effects on NMR J-coupling of Sn and Pb containing molecules

Abstract

We studied the influence of relativistic and electron correlation effects on NMR J-couplings in the following set of heavy-atom containing molecules: \(XY_4\) and H\(_3XX\)H\(_3\) (X = Sn, Pb; Y = H, F, Cl, Br, I). We applied two formalisms, the relativistic polarization propagator approach at random phase level of approach (RelPPA-RPA) and density functional theory (DFT) with functionals as implemented in the DIRAC code. We have chosen four functionals that have different amount of HF exchange (PBE0, B3LYP, BLYP, BP86). For those molecular systems, results of calculations with BLYP functional have the best performance as compared with available experimental data. As was previously found for magnetic shieldings in other molecular systems we are able to show here that DFT functionals must be modified in order to obtain reliable results of NMR J-coupling within the relativistic regime. We can state that there is a non-linear dependence among both, electron correlation and relativistic effects that should be introduced in the functionals. The functionals implemented in the DIRAC code are standard nonrelativistic ones which were parameterized with data taken from light-atom containing molecules. This explains why they are not able to properly introduce relativistic effects on NMR parameters, like J-coupling constant. Lastly we show that in the analysis of J-couplings for the family of compounds mentioned above, one must consider the effects of a third heavy-atom that is close to the J-coupled atoms of the same molecule, specially for \(^n\)J(H–H). This kind of effect is similar to the newest and so called heavy-atom effect on vicinal heavy atoms, HAVHA, proposed for the NMR-shielding constant. Such effects are among the most important relativistic effects in the family of compounds studied in this work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Pyykko P (1988) Chem Rev 88:563

    CAS  Article  Google Scholar 

  2. 2.

    Autschbach J, Ziegler T (2002) Encycl NMR 9:306

    CAS  Google Scholar 

  3. 3.

    Dyall KG, Fægri K (2009) Introduction torelativistic quantum chemistry. Oxford University Press, New York

    Google Scholar 

  4. 4.

    Reiher M, Wolf A (2009) Relativistic quantum chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. 5.

    Liu W (2010) Mol Phys 108:1679

    CAS  Article  Google Scholar 

  6. 6.

    Aucar GA, Romero RH, Maldonado AF (2010) Int Rev Phys Chem 29:1

    CAS  Article  Google Scholar 

  7. 7.

    Lobayan RM, Aucar GA (1998) J Mol Struct (Theochem) 452:13

    CAS  Article  Google Scholar 

  8. 8.

    Enevoldsen T, Visscher L, Saue T, Jensen HJ Aa (2000) J Oddershede J Chem Phys 112(8):3493

    CAS  Article  Google Scholar 

  9. 9.

    Bagno A, Casella G, Saielli G (2006) J Chem Theory Comput 2:37

    CAS  Article  Google Scholar 

  10. 10.

    Moncho S, Autschbach J (2010) J Chem Theory Comput 6:223

    CAS  Article  Google Scholar 

  11. 11.

    Zheng S, Autschbach J (2011) J Autschbach Chem Eur J 17:161

    CAS  Article  Google Scholar 

  12. 12.

    Autschbach J (2014) Encyclopedia of analytical chemistry. Wiley, Hoboken

    Google Scholar 

  13. 13.

    Visscher L, Enevoldsen T, Saue T, Jensen HJ Aa (1999) J Oddershede J Comput Chem 20:1262

    CAS  Article  Google Scholar 

  14. 14.

    Aucar GA, Oddershede J (1993) J Oddershede Int J Quantum Chem 47:425

    CAS  Article  Google Scholar 

  15. 15.

    Aucar GA, Saue T, Visscher L, Jensen H J Aa (1999) J Aa Jensen J Chem Phys 110:6208

    CAS  Article  Google Scholar 

  16. 16.

    Komorovsky S, Repisky M, Malkina OL, Malkin Ondík VG, Kaupp M, Malkin Ondík I (2008) J Chem Phys 128:104104

    Article  Google Scholar 

  17. 17.

    Maeda H, Ootani Y, Fukui H (2008) J Chem Phys 128:129903

    Article  Google Scholar 

  18. 18.

    Seino J, Hada M (2010) J Chem Phys 132:174105

    Article  Google Scholar 

  19. 19.

    de Dios AC, Jameson CJ (2012) J Jameson Annu Rep NMR Spectrosc 77:1

    Article  Google Scholar 

  20. 20.

    Xiao Y, Sun Q, Liu W (2012) Theo Chem Acc 131:1080

    Article  Google Scholar 

  21. 21.

    Melo JI, Ruiz de Azúa MC, Giribet CG, Aucar GA, Romero RH (2003) J Chem Phys 118:471

    CAS  Article  Google Scholar 

  22. 22.

    Vaara J (2007) Phys Chem Chem Phys 9:5399

    CAS  Article  Google Scholar 

  23. 23.

    Repisky M, Komorovsky S, Malkina OL, Malkin VG (2009) Chem Phys 356:236

    CAS  Article  Google Scholar 

  24. 24.

    Chang C, Pelissier M, Durand M (1986) Phys Scr 34:394

    CAS  Article  Google Scholar 

  25. 25.

    van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597

    Article  Google Scholar 

  26. 26.

    van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783

    Article  Google Scholar 

  27. 27.

    Becke AD (1988) Phys Rev A 38(6):3098

    CAS  Article  Google Scholar 

  28. 28.

    Perdew JP (1986) Phys Rev B 33(12):8822

    Article  Google Scholar 

  29. 29.

    Amsterdam Density Functional (ADF) (2006) ADF2006, SCM. Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com

  30. 30.

    Autschbach J, Ziegler T (2001) J Am Chem Soc 123:3341

    CAS  Article  Google Scholar 

  31. 31.

    Sutter K, Truflandier LA, Autschbach J (2011) Chem Phys Chem 12:1448

    CAS  Google Scholar 

  32. 32.

    Demissie TB, Kostenko N, Komorovsky S, Repisky M, Isaksson J, Bayer A, Ruud K (2015) J Phys Org Chem 28:723

    CAS  Article  Google Scholar 

  33. 33.

    Aucar GA (2014) Phys Chem Chem Phys 16:4420

    CAS  Article  Google Scholar 

  34. 34.

    Romero RH, Aucar GA (2002) Phys Rev A 65:53411

    Article  Google Scholar 

  35. 35.

    Romero RH, Aucar GA (2002) Int J Mol Sci 3:914

    CAS  Article  Google Scholar 

  36. 36.

    Visscher L, Jensen H. J. Aa, Bast R, Saue T (2013) DIRAC, a relativistic ab initio electronic structure program, Release DIRAC13, http://www.diracprogram.org

  37. 37.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Article  Google Scholar 

  38. 38.

    Becke AD (1993) J Chem Phys 98:5648

    CAS  Article  Google Scholar 

  39. 39.

    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    CAS  Article  Google Scholar 

  40. 40.

    Mayer M, Häberlen OD, Rösch N (1996) Phys Rev A 54:4775

    CAS  Article  Google Scholar 

  41. 41.

    Varga S, Engel E, Sepp W-D, Fricke B (1999) Phys Rev A 59:4288

    CAS  Article  Google Scholar 

  42. 42.

    Varga S, Fricke B, Nakamatsu H, Mukoyama T, Anton J, Geschke D, Heitmann A, Engel E, Bastug T (2000) J Chem Phys 112:3499

    CAS  Article  Google Scholar 

  43. 43.

    Arcisauskaite V, Melo JI, Hemmingsen L, Sauer SPA (2011) J Chem Phys 135:044306

    Article  Google Scholar 

  44. 44.

    Roukala J, Maldonado AF, Vaara J, Aucar GA, Lantto P (2011) Phys Chem Chem Phys 13:21016

    CAS  Article  Google Scholar 

  45. 45.

    Maldonado AF, Aucar GA (2014) J Phys Chem A 118:7863

    CAS  Article  Google Scholar 

  46. 46.

    Bühl M, Kaupp M, Malkina OL, Malkin VG (1999) J Comput Chem 20:91

    Article  Google Scholar 

  47. 47.

    Sanders LK, Oldfield E (2001) J Phys Chem A 105:8098

    CAS  Article  Google Scholar 

  48. 48.

    Auer AA, Gauss J, Stanton JF (2003) J Chem Phys 118:10407

    CAS  Article  Google Scholar 

  49. 49.

    Tossell JA (2004) Phys Chem Miner 31:41

    CAS  Article  Google Scholar 

  50. 50.

    Kagaku B (1984) Handbook of chemistry, 3rd edn. Maruzen Company, Tokyo

    Google Scholar 

  51. 51.

    Schleyer P v R, Kaupp M, Hampel F, Bremer M, Mislowt K (1992) J Am Chem Soc 114:6791

    CAS  Article  Google Scholar 

  52. 52.

    Dyall KG (2006) Theor Chem Acc 115:441

    CAS  Article  Google Scholar 

  53. 53.

    Dunning TH Jr (1989) J Chem Phys 90:1007

    CAS  Article  Google Scholar 

  54. 54.

    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    CAS  Article  Google Scholar 

  55. 55.

    Lindh R, Malmqvist PA, Gagliardi L (2001) Theor Chem Acc 106:178

    CAS  Article  Google Scholar 

  56. 56.

    Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE, Csonka GI (2005) J Chem Phys 123(6):062201

    Article  Google Scholar 

  57. 57.

    Schumann C, Dreeskamp HJ (1970) J Dreeskamp Magn Reson 3:204

    CAS  Google Scholar 

  58. 58.

    Sharp RR (1972) J Chem Phys 57:5321

    CAS  Article  Google Scholar 

  59. 59.

    Sharp RR (1974) J Chem Phys 60:1149

    CAS  Article  Google Scholar 

  60. 60.

    Hawk RM, Sharp RR (1974) J Chem Phys 60:1009

    CAS  Article  Google Scholar 

  61. 61.

    Autschbach J (2009) Chem Phys Chem 10:2274

    CAS  Google Scholar 

  62. 62.

    Maldonado AF, Aucar GA (2009) Phys Chem Chem Phys 11:5615

    CAS  Article  Google Scholar 

  63. 63.

    Melo JI, Maldonado A, Aucar GA (2011) Theor Chem Acc 129:483

    CAS  Article  Google Scholar 

  64. 64.

    Maldonado AF, Aucar GA, Melo JI (2014) J Mol Model 20:2417

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the Argentinian Agency for promotion of Science and Technology, FONCYT (grant PICT 2012-1214).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. F. Maldonado.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giménez, C.A., Maldonado, A.F. & Aucar, G.A. Relativistic and electron correlation effects on NMR J-coupling of Sn and Pb containing molecules. Theor Chem Acc 135, 201 (2016). https://doi.org/10.1007/s00214-016-1952-3

Download citation

Keywords

  • Spin-spin coupling
  • Relativistic effects
  • DFT
  • Electron correlation