DFT exploration of mechanistic pathways of an aza-Morita–Baylis–Hillman reaction


A new bimolecular pathway for a model aza-MBH reaction is presented and then explored in more details by DFT/M06-2X calculations. For this bimolecular pathway, explicit formic acid was considered in the rate-determining step showing the beneficial action from this additive, which plays a role as a co-catalyst. According to the current computations, this mechanistic cycle is a feasible pathway for the formation of the aza adduct and it explains the experimental detection of a key intermediate. A comparative analysis of the current results and previous ones reveals the substrate and medium dependence of the aza-MBH reaction. These factors lead to distinct pathways for the reaction, uncovering the complexity for conducting this reaction.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Shi M, Wang F-J, Zhao M-X, Wei Y (2011) The chemistry of the Morita–Baylis–Hillman reaction. RSC Publishing, Cambrigde

    Google Scholar 

  2. 2.

    Basavaiah D, Veeraraghavaiah G (2012) Chem Soc Rev 41:68–78

    CAS  Article  Google Scholar 

  3. 3.

    Wei Y, Shi M (2013) Chem Rev 113:6659–6690

    CAS  Article  Google Scholar 

  4. 4.

    Declerck V, Martinez J, Lamaty F (2009) Chem Rev 109:1–48

    CAS  Article  Google Scholar 

  5. 5.

    Masson G, Housseman C, Zhu J (2007) Angew Chem Int Ed 46:4614–4628

    CAS  Article  Google Scholar 

  6. 6.

    Hu F-L, Shi M (2014) Org Chem Front 1:587–595

    CAS  Article  Google Scholar 

  7. 7.

    Regiani T, Santos VG, Godoi MN, Vaz BG, Eberlin MN, Coelho F (2011) Chem Commun 47:6593–6595

    CAS  Article  Google Scholar 

  8. 8.

    Verma P, Verma P, Sunoj RB (2014) Org Biomol Chem 12:2176–2179

    CAS  Article  Google Scholar 

  9. 9.

    Mansilla J, Saá JM (2010) Molecules 15: 709–734 

  10. 10.

    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    CAS  Article  Google Scholar 

  11. 11.

    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    CAS  Article  Google Scholar 

  12. 12.

    Cantillo D, Kappe CO (2010) J Org Chem 75:8615–8626

    CAS  Article  Google Scholar 

  13. 13.

    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    CAS  Article  Google Scholar 

  14. 14.

    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, MDeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    CAS  Article  Google Scholar 

  15. 15.

    Hratchian HP, Schlegel HB (2005) J Chem Theory Comput 1:61–69

    CAS  Article  Google Scholar 

  16. 16.

    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    CAS  Article  Google Scholar 

  17. 17.

    Gonzalez C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    CAS  Article  Google Scholar 

  18. 18.

    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    CAS  Article  Google Scholar 

  19. 19.

    Bode B, Gordon MS (1998) J Mol Graph Model 16:133–138

    CAS  Article  Google Scholar 

  20. 20.

    Amarante GW, Milagre HMS, Vaz BG, Ferreira BRV, Eberlin MN, Coelho F (2009) J Org Chem 74:3031–3037

    CAS  Article  Google Scholar 

  21. 21.

    Zhao GJ, Han KL (2012) Acc Chem Res 45:404–413

    CAS  Article  Google Scholar 

  22. 22.

    Roy D, Patel C, Sunoj RB (2009) J Org Chem 74:6936–6943

    CAS  Article  Google Scholar 

  23. 23.

    Jones CE, Turega SM, Clarke ML, Philp D (2008) Tetrahedron Lett 49:4666–4669

    CAS  Article  Google Scholar 

  24. 24.

    Robiette R, Aggarwal VK, Harvey JN (2007) J Am Chem Soc 129:15513–15525

    CAS  Article  Google Scholar 

  25. 25.

    Price KE, Broadwater SJ, Jung HM, McQuade DT (2005) Org Lett 7:147–150

    CAS  Article  Google Scholar 

  26. 26.

    Carrasco-Sanchez V, Simirgiotis MJ, Santos LS (2009) Molecules 14:3989–4021

    CAS  Article  Google Scholar 

Download references


A.P.d.L.B. is thankful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grant #2013/22235-0 and the support of the Computation Center of the University of São Paulo (LCCA-USP). FC thanks FAPESP for research Grants #2013/10449-5 and 2013/07600-3 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for research fellowship. A.A.C.B. thanks FAPESP for research Grant #2015/01491-3.

Author information



Corresponding authors

Correspondence to Ana P. de Lima Batista or Ataualpa A. C. Braga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Lima Batista, A.P., Coelho, F. & Braga, A.A.C. DFT exploration of mechanistic pathways of an aza-Morita–Baylis–Hillman reaction. Theor Chem Acc 135, 186 (2016). https://doi.org/10.1007/s00214-016-1946-1

Download citation


  • aza-Morita–Baylis–Hillman
  • Organocatalysis
  • DFT
  • Mechanistic cycles
  • Co-catalyst