DFT exploration of mechanistic pathways of an aza-Morita–Baylis–Hillman reaction

Abstract

A new bimolecular pathway for a model aza-MBH reaction is presented and then explored in more details by DFT/M06-2X calculations. For this bimolecular pathway, explicit formic acid was considered in the rate-determining step showing the beneficial action from this additive, which plays a role as a co-catalyst. According to the current computations, this mechanistic cycle is a feasible pathway for the formation of the aza adduct and it explains the experimental detection of a key intermediate. A comparative analysis of the current results and previous ones reveals the substrate and medium dependence of the aza-MBH reaction. These factors lead to distinct pathways for the reaction, uncovering the complexity for conducting this reaction.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Shi M, Wang F-J, Zhao M-X, Wei Y (2011) The chemistry of the Morita–Baylis–Hillman reaction. RSC Publishing, Cambrigde

    Google Scholar 

  2. 2.

    Basavaiah D, Veeraraghavaiah G (2012) Chem Soc Rev 41:68–78

    CAS  Article  Google Scholar 

  3. 3.

    Wei Y, Shi M (2013) Chem Rev 113:6659–6690

    CAS  Article  Google Scholar 

  4. 4.

    Declerck V, Martinez J, Lamaty F (2009) Chem Rev 109:1–48

    CAS  Article  Google Scholar 

  5. 5.

    Masson G, Housseman C, Zhu J (2007) Angew Chem Int Ed 46:4614–4628

    CAS  Article  Google Scholar 

  6. 6.

    Hu F-L, Shi M (2014) Org Chem Front 1:587–595

    CAS  Article  Google Scholar 

  7. 7.

    Regiani T, Santos VG, Godoi MN, Vaz BG, Eberlin MN, Coelho F (2011) Chem Commun 47:6593–6595

    CAS  Article  Google Scholar 

  8. 8.

    Verma P, Verma P, Sunoj RB (2014) Org Biomol Chem 12:2176–2179

    CAS  Article  Google Scholar 

  9. 9.

    Mansilla J, Saá JM (2010) Molecules 15: 709–734 


  10. 10.

    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    CAS  Article  Google Scholar 

  11. 11.

    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    CAS  Article  Google Scholar 

  12. 12.

    Cantillo D, Kappe CO (2010) J Org Chem 75:8615–8626

    CAS  Article  Google Scholar 

  13. 13.

    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    CAS  Article  Google Scholar 

  14. 14.

    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, MDeFrees DJ, Pople JA (1982) J Chem Phys 77:3654–3665

    CAS  Article  Google Scholar 

  15. 15.

    Hratchian HP, Schlegel HB (2005) J Chem Theory Comput 1:61–69

    CAS  Article  Google Scholar 

  16. 16.

    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    CAS  Article  Google Scholar 

  17. 17.

    Gonzalez C, Schlegel HB (1991) J Chem Phys 95:5853–5860

    CAS  Article  Google Scholar 

  18. 18.

    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    CAS  Article  Google Scholar 

  19. 19.

    Bode B, Gordon MS (1998) J Mol Graph Model 16:133–138

    CAS  Article  Google Scholar 

  20. 20.

    Amarante GW, Milagre HMS, Vaz BG, Ferreira BRV, Eberlin MN, Coelho F (2009) J Org Chem 74:3031–3037

    CAS  Article  Google Scholar 

  21. 21.

    Zhao GJ, Han KL (2012) Acc Chem Res 45:404–413

    CAS  Article  Google Scholar 

  22. 22.

    Roy D, Patel C, Sunoj RB (2009) J Org Chem 74:6936–6943

    CAS  Article  Google Scholar 

  23. 23.

    Jones CE, Turega SM, Clarke ML, Philp D (2008) Tetrahedron Lett 49:4666–4669

    CAS  Article  Google Scholar 

  24. 24.

    Robiette R, Aggarwal VK, Harvey JN (2007) J Am Chem Soc 129:15513–15525

    CAS  Article  Google Scholar 

  25. 25.

    Price KE, Broadwater SJ, Jung HM, McQuade DT (2005) Org Lett 7:147–150

    CAS  Article  Google Scholar 

  26. 26.

    Carrasco-Sanchez V, Simirgiotis MJ, Santos LS (2009) Molecules 14:3989–4021

    CAS  Article  Google Scholar 

Download references

Acknowledgments

A.P.d.L.B. is thankful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Grant #2013/22235-0 and the support of the Computation Center of the University of São Paulo (LCCA-USP). FC thanks FAPESP for research Grants #2013/10449-5 and 2013/07600-3 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for research fellowship. A.A.C.B. thanks FAPESP for research Grant #2015/01491-3.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ana P. de Lima Batista or Ataualpa A. C. Braga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Lima Batista, A.P., Coelho, F. & Braga, A.A.C. DFT exploration of mechanistic pathways of an aza-Morita–Baylis–Hillman reaction. Theor Chem Acc 135, 186 (2016). https://doi.org/10.1007/s00214-016-1946-1

Download citation

Keywords

  • aza-Morita–Baylis–Hillman
  • Organocatalysis
  • DFT
  • Mechanistic cycles
  • Co-catalyst