The ground and excited states of HBrO2 [HOOBr, HOBrO, and HBr(O)O] and HBrO3 (HOOOBr and HOOBrO) isomers

  • Gabriel L. C. de Souza
  • Alex Brown
Regular Article


The HBrO2 isomers have been analyzed computationally to confirm the previous experimental assignments for HOOBr and HOBrO and to assist in future identification of the as yet unobserved HBr(O)O isomer. Optimized geometries of the HOOBr, HOBrO, and HBr(O)O isomers and the transition states connecting them were obtained at the CCSD(T)/O, H: aug-cc-pVTZ, Br: aug-cc-pVTZ-PP level of theory. The corresponding harmonic vibrational frequencies for the HOOBr, HOBrO, and HBr(O)O isomers are reported for all isotopologues considered in the experimental measurements, i.e., those involving hydrogen, deuterium, \(^{79}\)Br, \(^{81}\)Br, \(^{16}\)O, and \(^{18}\)O. The relative energetics of the stationary point geometries were determined through extrapolation of energies to the complete basis set limit. To explain the photodestruction observed experimentally for HOOBr and HOBrO, the three lowest low-lying singlet and triplet excited electronic states for each of the three isomers were computed using the equation-of-motion coupled-cluster with inclusion of single and double excitations (EOM-CCSD) and time-dependent density functional theory (TD-B3LYP and TD-CAM-B3LYP) approaches; all utilizing the all-electron aug-cc-pVTZ basis sets for all atoms. Multi-reference configuration interaction (MRCI)/aug-cc-pVTZ computations were carried out for the lowest singlet and lowest two triplet excited states. The vertical excitation energies for the low-lying excited states of the most stable isomer (HOOBr) are reported for the first time. The vibrational frequencies for the \(\hbox{HBrO}_{2}\) isomers are used along with new anharmonic vibrational frequency computations (at the PBE0/aug-cc-pVTZ level of theory) and vertical excitation energies (at the TD-B3LYP/aug-cc-pVTZ, TD-CAMB3LYP/aug-cc-pVTZ, and EOM-CCSD/aug-cc-pVTZ levels of theory) for the \(\hbox {HBrO}_{3}\) isomers, HOOOBr and HOOBrO, to determine that previously unassigned peaks in the experimental spectrum generated from HBr/O\(_{2}\) photolysis in a Ne matrix belong to HOOOBr.


\(\hbox {HBrO}_{2}\) \(\hbox {HBrO}_{3}\) Anharmonic vibrational frequencies Vertical excitation energies IR spectrum 



G. L. C. de Souza thanks the Brazilian financial agency CAPES for providing a postdoctoral scholarship (CAPES Process Number 1842-13-7). The research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant to A.B.) and has been enabled through computing resources from Westgrid and Compute/Calcul Canada.

Supplementary material

214_2016_1931_MOESM1_ESM.pdf (188 kb)
Supplementary material 1 (pdf 187 KB)


  1. 1.
    Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249:810–812CrossRefGoogle Scholar
  2. 2.
    Saiz-Lopez A, Plane JMC, Baker AR, Carpenter LJ, von Glasgow R, Gómez Martín JC, McFiggans G, Saunders RW (2012) Atmospheric chemistry of iodine. Chem Rev 112:1773–1804CrossRefGoogle Scholar
  3. 3.
    Guha S, Francisco JS (1999) Stratospheric bromine chemistry: Insights from computational studies. In: Leczczynski J (ed) Computational chemistry: reviews of current trends, vol 3. World Scientific, River Edge, pp 75–148CrossRefGoogle Scholar
  4. 4.
    Saiz-Lopez A, von Glasgow R (2012) Reactive halogen chemistry in the troposphere. Chem Soc Rev 41:6448–6472CrossRefGoogle Scholar
  5. 5.
    Salawitch RJ (2006) Atmospheric chemistry: biogenic bromine. Nature 439:275–277CrossRefGoogle Scholar
  6. 6.
    von Hobe M (2007) Revisiting ozone depletion. Science 318:1878–1879CrossRefGoogle Scholar
  7. 7.
    Wayne RP, Poulet G, Biggs P, Burrows JP, Cox RA, Crutzen PJ, Hayman GD, Jenkins ME, Le Bras G, Moortgat GK, Platt U, Schindler RN (1995) Halogen oxides: radicals, sources, and reservoirs in the laboratory and in the atmosphere. Atmos Environ 29:2677–2881CrossRefGoogle Scholar
  8. 8.
    Wosfy SF, McElroy MB, Yung YL (1975) The chemistry of atmospheric bromine. Geophys Res Lett 2:215–218CrossRefGoogle Scholar
  9. 9.
    Burrows JP, Cliff DI, Harris GW, Thrush BA, Wilkinson JPT (1979) Atmospheric reactions of the HO2 radical studied by laser magnetic resonance spectroscopy. Proc R Soc Lond Ser A 368:463–481CrossRefGoogle Scholar
  10. 10.
    Yung YL, Pinto JP, Watson RT, Sander SP (1980) Atmospheric bromine and ozone perturbations in the lower stratosphere. J Atmos Sci 37:339–353CrossRefGoogle Scholar
  11. 11.
    Anderson JG, Toohey DW, Brune WH (1991) Free radicals within the Antarctic vortex: the role of CFCs in antarctic ozone loss. Science 25:39–45CrossRefGoogle Scholar
  12. 12.
    Solomon S, Albritton DL (1992) Time-dependent ozone depletion potentials for short-term and long-term forecasts. Nature 357:33–37CrossRefGoogle Scholar
  13. 13.
    Wennberg PO, Cohen RC, Stimpfle RM, Koplow JP, Anderson JG, Salawitch RJ, Fahey DW, Woodbridge EL, Keim ER, Gao RS, Webster CR, May RD, Toohey DW, Avallone LM, Proffitt MH, Loewenstein M, Podolske JR, Chan KR, Wofsy SC (1994) Removal of stratospheric \({\text{ O }}_3\) by radicals: in situ measurements of OH, \({\text{ HO }}_2\), NO, \({\text{ NO}}_2\), ClO, and BrO. Science 266:398–404CrossRefGoogle Scholar
  14. 14.
    Garcia RR, Solomon S (1994) A new numerical model of the middle atmosphere. 2. Ozone and related species. J Geophys Res 99:12937–12951CrossRefGoogle Scholar
  15. 15.
    Solomon S, Garcia RR, Ravishankara AR (1994) On the role of iodine in ozone depletion. J Geophys Res 99:20491–20499CrossRefGoogle Scholar
  16. 16.
    Yagi K, Williams J, Yang NY, Cicerone RJ (1995) Atmospheric methyl bromide \(({\text{ CH }}_3{\text{ Br }})\) from agricultural soil fumigations. Science 267:1979–1981CrossRefGoogle Scholar
  17. 17.
    Johnsson K, Engdahl A, Nelander B (1996) IR and photodecomposition spectroscopic study of HOClO and \({\text{ HClO }}_2\) in argon matrices. J Phys Chem 100:3923–3926CrossRefGoogle Scholar
  18. 18.
    Yoshinobu T, Akai N, Kawai A, Shibuya K (2009) Neon matrix-isolation infrared spectrum of HOOCl measured upon the VUV-light irradiation of an \({\text{ HCl/O}}_2\) mixture. Chem Phys Lett 477:70–74CrossRefGoogle Scholar
  19. 19.
    Peterson KA, Shepler BC, Figgen D, Stoll H (2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J Phys Chem A 110:13877–13883CrossRefGoogle Scholar
  20. 20.
    Bogan DJ, Thorn RP, Nesbitt FL, Stief LJ (1996) Experimental 300 K measurement of the rate constant of the reaction OH + BrO \(\rightarrow\) products. J Phys Chem 100:14383–14389CrossRefGoogle Scholar
  21. 21.
    Akai N, Wakamatsu D, Yoshinobu T, Kawai A, Shibuya K (2010) Matrix-isolation infrared spectra of HOOBr and HOBrO produced upon VUV light irradiation of \({\text{ HBr/O}}_2/{\text{ Ne}}\) system. Chem Phys Lett 499:117–120CrossRefGoogle Scholar
  22. 22.
    Lee TJ (1996) Ab initio characterization of \({\text{ HBrO}}_{2}\) isomers: implications for stratospheric bromine chemistry. Chem Phys Lett 262:559–566CrossRefGoogle Scholar
  23. 23.
    Guha S, Francisco JS (1997) Density functional studies of the HO + BrO and \({\text{ HO}}_{2}\) + Br reaction. Phys Chem Chem Phys 1:3973–3979Google Scholar
  24. 24.
    Sumathi R, Peyerimhoff SD (1999) A density functional theory study of the structure, vibrational spectra, and relative energies of \({\text{ XBrO}}_{2}\) (where X = H, Cl and Br). J Phys Chem A 101:5347–5359Google Scholar
  25. 25.
    Guha S, Francisco JS (1999) A theoretical study of the isomerization pathways for \({\text{ HBrO}}_{2}\) isomers. Chem Phys 247:387–394CrossRefGoogle Scholar
  26. 26.
    Guha S, Francisco JS (2000) The isomerization of HOOBr to HOBrO. Chem Phys Lett 319:650–654CrossRefGoogle Scholar
  27. 27.
    Santos CMP, Faria RB, Machuca-Herrera JO, Machado SP (2001) Equilibrium geometry, vibrational frequencies, and heat of formation of HOBr, \({\text{ HBrO}}_2\), and \({\text{ HBrO} }_3\) isomers. Can J Chem 79:1135–1144CrossRefGoogle Scholar
  28. 28.
    Li X, Zeng Y, Meng L, Zheng S (2007) Topological characterization of \({\text{ HXO}}_{2}\) (X = Cl, Br, I) isomerization. J Phys Chem A 111:1530–1535CrossRefGoogle Scholar
  29. 29.
    Lee TJ, Parthiban S, Head-Gordon M (1999) Accurate calculations on excited states: new theories applied to the –OX, –XO, and –\({\text{ XO}}_2\) (X = Cl and Br) chromophores and implications for stratospheric bromine chemistry. Spectrochim Acta A 55:561–574CrossRefGoogle Scholar
  30. 30.
    Lee TJ, Mejia CN, Beran GJO, Head-Gordon M (2005) Search for stratospheric bromine reservoir species: theoretical study of the photostability of mono-, tri-, and pentacoordinated bromine compounds. J. Phys. Chem. A 109:8133–8139CrossRefGoogle Scholar
  31. 31.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  32. 32.
    Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods. Chem Phys Lett 165:513–522CrossRefGoogle Scholar
  33. 33.
    Stanton JF, Lopreore CL, Gauss J (1998) The equilibrium structure and fundamental vibrational frequencies of dioxirane. J Chem Phys 108:7190–7196CrossRefGoogle Scholar
  34. 34.
    Hampel C, Peterson KA, Werner HJ (1992) A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and brueckner coupled cluster (BCCD) methods. Chem Phys Lett 190:1–12CrossRefGoogle Scholar
  35. 35.
    Peterson K, Figgen D, Goll E, Stoll H, Dolg M (2003) Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J Chem Phys 119:11113–11123CrossRefGoogle Scholar
  36. 36.
    Dunning TH Jr (1990) Gaussian-basis sets for use in correlated molecular calculations.1. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  37. 37.
    Feller D (1993) The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water. J Chem Phys 98:7059–7071CrossRefGoogle Scholar
  38. 38.
    Peterson KA, Woon DE, Dunning TH Jr (1994) Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + \({\text{ H}}_{2} \rightarrow {\text{ H}}_{2}\) + H reaction. J Chem Phys 100:7410–7415CrossRefGoogle Scholar
  39. 39.
    Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646CrossRefGoogle Scholar
  40. 40.
    Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110:7667–7676CrossRefGoogle Scholar
  41. 41.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M (2012) Molpro, version 2012.1, a package of ab initio programs. See
  42. 42.
    Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general-purpose quantum chemistry program package. WIREs Comput Mol Sci 2:242–253CrossRefGoogle Scholar
  43. 43.
    Stanton JF, Bartlett RJ (1993) The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J Chem Phys 98:7029–7039CrossRefGoogle Scholar
  44. 44.
    Koch H, Kobayashi R, Sanchez de Merás A, Jorgensen P (1994) Calculation of size-intensive transition moments from the coupled cluster singles and doubles linear response function. J Chem Phys 100:4393–4400CrossRefGoogle Scholar
  45. 45.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449CrossRefGoogle Scholar
  46. 46.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224CrossRefGoogle Scholar
  47. 47.
    Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  48. 48.
    Adamo C, Barone V (1997) Toward reliable adiabatic connection models free from adjustable parameters. Chem Phys Lett 274:242–250CrossRefGoogle Scholar
  49. 49.
    Becke A (1996) Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104:1040–1046CrossRefGoogle Scholar
  50. 50.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  51. 51.
    Koch H, Jorgensen P (1990) Coupled cluster response functions. J Chem Phys 93:3333–3344CrossRefGoogle Scholar
  52. 52.
    Kállay M, Gauss J (2004) Calculation of excited-state properties using general coupled-cluster and configuration-interaction models. J Chem Phys 121:9257–9269CrossRefGoogle Scholar
  53. 53.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision E.1. Gaussian Inc. Wallingford, CTGoogle Scholar
  54. 54.
    Werner HJ, Knowles PJ (1985) A 2nd order multiconfiguration SCF procedure with optimum convergence. J Chem Phys 82:5053–5063CrossRefGoogle Scholar
  55. 55.
    Knowles PJ, Werner HJ (1985) An efficient 2nd-order MCSCF method for long configuration expansions. Chem Phys Lett 115:259–267CrossRefGoogle Scholar
  56. 56.
    Werner HJ, Knowles PJ (1988) An efficient internally contracted multiconfiguration reference configuration-interaction method. J Chem Phys 89:5803–5814CrossRefGoogle Scholar
  57. 57.
    Knowles PJ, Werner HJ (1988) An efficient method for the evaluation of coupling coefficients in configuration interaction calculations. Chem Phys Lett 145:514–522CrossRefGoogle Scholar
  58. 58.
    Shamasundar KR, Knizia G, Werner HJ (2011) A new internally contracted multi-reference configuration interaction method. J Chem Phys 135:054101CrossRefGoogle Scholar
  59. 59.
    Knowles PJ, Werner HJ (1992) Internally contracted multiconfiguration-reference configuration interaction calculations for excited states. Theor Chim Acta 84:95–103CrossRefGoogle Scholar
  60. 60.
    Møller C, Plesset M (1930) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  61. 61.
    Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth-order storage. theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220:122–128CrossRefGoogle Scholar
  62. 62.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289CrossRefGoogle Scholar
  63. 63.
    Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  64. 64.
    Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6169CrossRefGoogle Scholar
  65. 65.
    Perdew JP, Burke K, Ernzerhoff M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  66. 66.
    Perdew JP, Burke K, Ernzerhoff M (1996) Erratum: generalized gradient approximation made simple. Phys Rev Lett 78:1396–1396CrossRefGoogle Scholar
  67. 67.
    Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975CrossRefGoogle Scholar
  68. 68.
    Bloine J, Barone V (2012) A second-order perturbation theory route to vibrational averages and transition properties of molecules: General formulation and application to infrared and vibrational circular dichroism spectroscopies. J Chem Phys 136:124108CrossRefGoogle Scholar
  69. 69.
    Guha S, Francisco JS (1999) An examination of the reaction pathways for the HOOOBr and HOOBrO complexes formed from the \({\text{ HO}}_{2} + {\text{ BrO}}_{2}\) reaction. J Phys Chem A 103:8000–8007CrossRefGoogle Scholar
  70. 70.
    Peterson KA, Francisco JS (2000) Low-lying excited states of HOOOCl and HOOOBr. J Chem Phys 112:8483–8486CrossRefGoogle Scholar
  71. 71.
    de Souza GLC, Brown A (2014) Probing ground and low-lying excited states for \({\text{ HIO}}_{2}\) isomers. J Chem Phys 141:234303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Federal de Mato GrossoCuiabáBrazil
  2. 2.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations