Advertisement

A first-principles investigation of histidine and its ionic counterparts

  • Uppula Purushotham
  • Hendrik Zipse
  • G. Narahari SastryEmail author
Regular Article

Abstract

Histidine (His) is an essential amino acid found to be a key residue in the active site and catalytic domain of many enzymes. Understanding the conformational preferences and the role of non-covalent interactions in the stability of this amino acid is of outstanding relevance in biological systems. The systematic study of the conformational space of His and its ionized counterparts in two tautomeric forms has been carried out using density functional theory. This study identified 33, 7, 9 and 11 distinct conformations on the potential energy surface (PES) of the His(NτH) tautomer in its neutral, zwitterionic, anionic and cationic states, respectively. On the other hand, the PES of the His(NπH) tautomer features 30, 12, 12 and 5 distinct conformers for the neutral, anionic, cationic and zwitterionic forms, respectively. Atoms-in-molecules analysis was employed to identify the nature of various non-covalent interactions such as hydrogen bonds, NH–π, OH–π and CH–O interactions. The conformers with NH–O hydrogen bonds are more stable than the conformers with other non-covalent interactions. In more general terms, the ability to form non-covalent interactions is a key determinant for conformational preferences of His and its ionic counter parts.

Keywords

Histidine Zwitterions Cation Anion AIM analysis Non-covalent interactions 

Notes

Acknowledgments

We thank CSIR 12th five-year plan GENESIS for financial support. GNS thanks DST for the support in the form of J. C. Bose National Fellowship.

Supplementary material

214_2016_1926_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)

References

  1. 1.
    Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116:2775CrossRefGoogle Scholar
  2. 2.
    Desfrancüois C, Carles S, Schermann JP (2000) Weakly bound clusters of biological interest. Chem Rev 100:3943CrossRefGoogle Scholar
  3. 3.
    Muller JD, McMahon BH, Chien EYT, Sligar SG, Nienhaus GU (1036) Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Biophys J 1999:77Google Scholar
  4. 4.
    Mangs H, Sui GC, Wiman B (2000) PAI-1 stability: the role of histidine residues. FEBS Lett 475:192CrossRefGoogle Scholar
  5. 5.
    Tjalsma H, Stover AG, Driks A, Venema G, Bron S, DijlJ M (2000) Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. J Biol Chem 275:25102CrossRefGoogle Scholar
  6. 6.
    Gubba S, Cipriano V, Musser JM (2000) Replacement of histidine 340 with alanine inactivates the group a streptococcus extracellular cysteine protease virulence factor. Infect Immunol 68:3716CrossRefGoogle Scholar
  7. 7.
    Tseng CC, Miyamoto M, Ramalingam K, Hemavathy KC, Levine MJ, Ramasubbu N (1999) The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase. Arch Oral Biol 44:119CrossRefGoogle Scholar
  8. 8.
    Wolff N, Deniau C, Letoffe S, Simenel C, Kumar V, Stojiljkovic I, Wandersman C, Delepierre M, Lecroisey A (2002) Histidine pKa shifts and changes of tautomeric states induced by the binding of gallium-protoporphyrin IX in the Hemophore HasASM. Protein Sci 11:757CrossRefGoogle Scholar
  9. 9.
    Harrison AG (1977) The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom Rev 16:201CrossRefGoogle Scholar
  10. 10.
    Rizzo TR, Park YD, Peteanu LA, Levy DH (1986) The electronic spectrum of amino-acid tryptophan in gas phase. J Chem Phys 84:2534CrossRefGoogle Scholar
  11. 11.
    Lindinger A, Toennies JP, Vilesov AF (1999) High resolution vibronic spectra of the amino acids tryptophan and tyrosine in 0.38 K cold helium droplets. J Chem Phys 110:1429CrossRefGoogle Scholar
  12. 12.
    Martinez SJ III, Alfano JC, Levy DH (1992) The electronic spectroscopy of the amino acids tyrosine and phenylalanine in a supersonic jet. J Mol Spectrosc 156:421CrossRefGoogle Scholar
  13. 13.
    Li L, Lubman DI (1988) Analytical jet spectroscopy of tyrosine and its analogs using a pulsed laser desorption volatilization method. Appl Spectrosc 42:418CrossRefGoogle Scholar
  14. 14.
    Caswell DS, Spiro TG (1986) Ultraviolet resonance Raman spectroscopy of imidazole, histidine, and Cu(imidazole)4+2: implications for protein studies. J Am Chem Soc 108:6470CrossRefGoogle Scholar
  15. 15.
    Feyer V, Plekan O, Richter R, Coreno M, Prince KC, Carravetta V (2008) Core level study of alanine and threonine. J Phys Chem A 112:7806CrossRefGoogle Scholar
  16. 16.
    Maul R, Preuss M, Ortmann F, Hannewald K, Bechstedt F (2007) Electronic excitations of glycine, alanine, and cysteine conformers from first-principles calculations. J Phys Chem A 111:4370CrossRefGoogle Scholar
  17. 17.
    Purushotham U, Sastry GN (1093) Exploration of conformations and quantum chemical investigation of l-tyrosine dimers, anions, cations and zwitterions: a DFT study. Theor Chem Acc 2012:131Google Scholar
  18. 18.
    Purushotham U, Vijay D, Sastry GN (2012) A computational investigation and the conformational analysis of dimers, anions, cations, and zwitterions of l-phenylalanine. J Comput Chem 33:44CrossRefGoogle Scholar
  19. 19.
    Purushotham U, Sastry GN (2013) A comprehensive conformational analysis of tryptophan, its ionic and dimeric forms. J Comput Chem 35:595CrossRefGoogle Scholar
  20. 20.
    Bhattacharyya R, Saha RP, Samanta U, Chakrabarti P (2003) Geometry of interaction of the histidine ring with other planar and basic residues. J Proteome Res 2:255CrossRefGoogle Scholar
  21. 21.
    Vijay D, Sastry GN (2010) The cooperativity of cation–π and π–π interactions. Chem Phys Lett 485:235CrossRefGoogle Scholar
  22. 22.
    Chourasia M, Sastry GM, Sastry GN (2011) Aromatic–aromatic interactions database, A2ID: an analysis of aromatic π-networks in proteins. Int J Biol Macromol 48:540CrossRefGoogle Scholar
  23. 23.
    Premkumar JR, Vijay D, Sastry GN (2012) The significance of the alkene size and the nature of the metal ion in metal–alkene complexes: a theoretical study. Dalton Trans 41:4965CrossRefGoogle Scholar
  24. 24.
    Umadevi D, Panigrahi S, Sastry GN (2014) Noncovalent interaction of carbon nanostructures. Acc Chem Res 47:2574CrossRefGoogle Scholar
  25. 25.
    Mahadevi AS, Sastry GN (2013) Cation–π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 113:2100CrossRefGoogle Scholar
  26. 26.
    Reddy AS, Sastry GN (2005) Cation [M = H+, Li+, Na+, K+, Ca2 +, Mg2 +, NH4 +, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J Phys Chem A 109:8893CrossRefGoogle Scholar
  27. 27.
    Reddy AS, Sastry GM, Sastry GN (2007) Cation–aromatic database. Proteins Struct Funct Bioinform 67:1179CrossRefGoogle Scholar
  28. 28.
    Reddy AS, Vijay D, Sastry GM, Sastry GN (2006) From subtle to substantial: role of metal ions on pi–pi interactions. J Phys Chem B 110:2479CrossRefGoogle Scholar
  29. 29.
    Vijay D, Zipse H, Sastry GN (2008) On the cooperativity of cation–pi and hydrogen bonding interactions. J Phys Chem B 112:8863CrossRefGoogle Scholar
  30. 30.
    Saha S, Sastry GN (2015) Cooperative or anti cooperative: how non-covalent interactions influence each other. J Phys Chem B 119:11121CrossRefGoogle Scholar
  31. 31.
    Rao JS, Zipse H, Sastry GN (2009) Explicit solvent effect on cation–pi interactions: a first principle investigation. J Phys Chem B 113:7225CrossRefGoogle Scholar
  32. 32.
    Reddy AS, Zipse H, Sastry GN (2007) Cation–pi interactions of bare and coordinatively saturated metal ions: contrasting structural and energetic characteristics. J Phys Chem B 111:11546CrossRefGoogle Scholar
  33. 33.
    Sharma B, Rao JS, Sastry GN (1971) Effect of solvation on ion binding to imidazole and methylimidazole. J Phys Chem A 2011:115Google Scholar
  34. 34.
    Vijay D, Sastry GN (2008) Exploring the size dependence of cyclic and acyclic pi-systems on cation–pi binding. Phys Chem Chem Phys 10:582CrossRefGoogle Scholar
  35. 35.
    Mahadevi AS, Sastry GN (2011) A theoretical study on interaction of cyclopentadienyl ligand with alkali and alkaline earth metals. J Phys Chem B 115:703CrossRefGoogle Scholar
  36. 36.
    Sharma B, Srivastava HK, Gayatri G, Sastry GN (2015) Energy decomposition analysis of cation–π, metal ion-lone pair, hydrogen bonded, charge assisted hydrogen bonded and π–π interactions. J Comp Chem 36:529CrossRefGoogle Scholar
  37. 37.
    Haung Z, Yu W, Li Z (2006) First-principle studies of gaseous aromatic amino acid histidine. THEOCHEM 801:7CrossRefGoogle Scholar
  38. 38.
    Tehrani ZA, Tavasoli E, Fattahi A (2010) Conformational behavior and potential energy profile of gaseous histidine. THEOCHEM 960:73CrossRefGoogle Scholar
  39. 39.
    Rijs AM, Ohanessian G, Oomens J, Meijer G, von Helden G, Compagnon I (2010) Internal proton transfer leading to stable zwitterionic structures in a neutral isolated peptide. Angew Chem Int Ed 49:2332CrossRefGoogle Scholar
  40. 40.
    Wei Y, Sateesh B, Maryasin B, Sastry GN, Zipse H (2009) The performance of computational techniques in locating the charge separated intermediates in organocatalytic transformations. J Comp Chem 30:2617CrossRefGoogle Scholar
  41. 41.
    Nielsen PA, Norrby PO, Liljefors T, Rega N, Barone V (2000) Quantum mechanical conformational analysis of β-alanine zwitterion in aqueous solution. J Am Chem Soc 122:3151CrossRefGoogle Scholar
  42. 42.
    Jockusch RA, Lemoff AS, Williams ER (2001) Effect of metal ion and water coordination on the structure of a gas-phase amino acid. J Am Chem Soc 123:12255CrossRefGoogle Scholar
  43. 43.
    Tajkhorshid E, Jalkanen KJ, Suhai S (1998) Structure and vibrational spectra of the zwitterion l-alanine in the presence of explicit water molecules: a density functional analysis. J Phys Chem B 102:5899CrossRefGoogle Scholar
  44. 44.
    Anderson DE, Becktel WJ, Dahlquist FW (1990) pH-induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29:2403CrossRefGoogle Scholar
  45. 45.
    Forsyth WR, Antosiewiez JM, Robertson AD (2002) Empirical relationships between protein structure and carboxyl pKa values in proteins. Proteins 48:388CrossRefGoogle Scholar
  46. 46.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W. H. Freeman, New YorkGoogle Scholar
  47. 47.
    Jarrold MF (2000) Peptides and proteins in the vapor phase. Annu Rev Phys Chem 51:179CrossRefGoogle Scholar
  48. 48.
    Green MK, Lebrilla CB (1998) The role of proton-bridged intermediates in promoting hydrogen–deuterium exchange in gas-phase protonated diamines, peptides and proteins. Int J Mass Spectrom Ion Proc 175:15CrossRefGoogle Scholar
  49. 49.
    Bliznyuk AA, Schaefer HF III, Amster IJ (1993) J Am Chem Soc 115:5149CrossRefGoogle Scholar
  50. 50.
    Kovacevic B, Rozman M, Klasinc L, Srzic D, Maksic ZB, Yanez M (2005) Gas-phase structure of protonated histidine and histidine methyl ester: combined experimental mass spectrometry and theoretical ab initio study. J Phys Chem A 109:8329CrossRefGoogle Scholar
  51. 51.
    O’Hair RAJ, Bowie JH, Gronert S (1992) Gas phase acidities of the α amino acids. Int J Mass Spectrom Ion Proc 117:23CrossRefGoogle Scholar
  52. 52.
    Woo HK, Lau KC, Wang XB, Wang LS (2006) Observation of cysteine thiolate and –S···H–O intermolecular hydrogen bond. J Phys Chem A 110:12603CrossRefGoogle Scholar
  53. 53.
    Tian Z, Kass SR (2008) J Am Chem Soc 130:10842CrossRefGoogle Scholar
  54. 54.
    Haung Z, Lin Z, Song C (2007) Protonation processes and electronic spectra of histidine and related ions. J Phys Chem A 111:4340CrossRefGoogle Scholar
  55. 55.
    Suite 2011 (2011) Maestro, version 9.2. Schrodinger, LLC/Accelrys Software Inc, New YorkGoogle Scholar
  56. 56.
    Dassault Systèmes BIOVIA (2016) Discovery studio modeling environment, release 3.5. Accelrys Software Inc., San DiegoGoogle Scholar
  57. 57.
    Canses E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032CrossRefGoogle Scholar
  58. 58.
    Tomasi J, Mennucci B, Camm R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999CrossRefGoogle Scholar
  59. 59.
    Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, OxfordGoogle Scholar
  60. 60.
    Biegler-Konig F, Schonbohm J, Derdau R, Bayles D, Bader RFW (2000) AIM 2000, version 2.0, Bielefeld, GermanyGoogle Scholar
  61. 61.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA,. Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega C, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Knox X, Li JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision D.1. Gaussian, Inc., PittsburghGoogle Scholar
  62. 62.
    Jurecka P, Sponer J, Cerny J, Hobza P (1985) Phys Chem Chem Phys 2006:8Google Scholar
  63. 63.
    Cybulski SM, Lytle ML (2007) J Chem Phys 127:141102CrossRefGoogle Scholar
  64. 64.
    Bermudez C, Mata J, Cabezas C, Alonso JL (2014) Tautomers in neutral histidine. Angew Chem Int Ed 53:11015CrossRefGoogle Scholar
  65. 65.
    Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (1999) Combined matrix-isolation infrared and theoretical DFT and ab initio study of the nonionized valine conformers. J Phys Chem A 103:4404CrossRefGoogle Scholar
  66. 66.
    Jensen JH, Gordon MS (1995) On the number of water molecules necessary to stabilize the glycine zwitterion. J Am Chem Soc 117:8159CrossRefGoogle Scholar
  67. 67.
    Jensen JH, Gordon MS (1996) Understanding the hydrogen bond using quantum chemistry. Acc Chem Res 29:536CrossRefGoogle Scholar
  68. 68.
    Ebrahimi A, Mostafa HK, Gholipour AR, Masoodi HR (2009) Interaction between uracil nucleobase and phenylalanine amino acid: the role of sodium cation in stacking. Theor Chem Acc 124:115CrossRefGoogle Scholar
  69. 69.
    Forbes MW, Bush MF, Polfer NC, Oomens J, Dunbar RC, Williams ER, Jockusch RA (2007) Infrared spectroscopy of arginine cation complexes: direct observation of gas-phase zwitterions. J Phys Chem A 111:11759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Uppula Purushotham
    • 1
  • Hendrik Zipse
    • 2
  • G. Narahari Sastry
    • 1
    Email author
  1. 1.Center for Molecular ModelingIndian Institute of Chemical TechnologyTarnaka, HyderabadIndia
  2. 2.Department of ChemistryLMU MüenchenMunichGermany

Personalised recommendations