Skip to main content
Log in

The aromaticity and electronic properties of monosubstituted benzene, borazine and diazadiborine rings: an ab initio MP2 study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A comparative Møller–Plesset perturbation theory-based study to analyze the substituent’s effect on the aromaticity and electronic properties of benzene, borazine and diazadiborine has been performed considering electron-donating groups (EDGs) such as –NH2 and –CH3 as well as electron-withdrawing groups (EWGs) such as –NO2 and –CF3 at various positions. The lowest energy structures of all monosubstituted rings follow the same trend of NICS values such that there is slight change in the aromaticity due to EDGs and EWGs. However, N-substituted borazine rings are more aromatic but less stable than B-substitution. More interestingly, the aromaticity of substituted diazadiborine rings increases with the increase in the energy of the isomers due to change in the position of substituent. Therefore, the aromaticity does not account for the relative stability of these species. The electronic properties of lowest energy isomers of benzene, borazine and diazadiborine are affected by the substituent in accordance with the aromaticity. For instance, the substitution of EDGs decreases and that of EWGs increases the ionization potential for all ring systems. The electronic properties of –NO2 (strong EDG)-substituted rings are particularly noticeable due to their large electrophilic index values and larger ionization potentials. This comprehensive report is intended to provide new insights into the energetics, aromaticity and related properties of substituted six-membered homocyclic as well as heterocyclic rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chiavarino B, Crestoni ME, Marzio AD, Fornarini S, Rosi M (1999) J Am Chem Soc 121:11204

    Article  CAS  Google Scholar 

  2. Chiavarino B, Crestoni ME, Fornarini S (1999) J Am Chem Soc 121:2619

    Article  CAS  Google Scholar 

  3. Kiran B, Phukan AK, Jemmis ED (2001) Inorg Chem 40:3615

    Article  CAS  Google Scholar 

  4. Islas R, Chamorro E, Robles J, Heine T, Santos JC, Merino G (2007) Struct Chem 18:833

    Article  CAS  Google Scholar 

  5. Timoshkin AY, Frenking G (2003) Inorg Chem 42:60

    Article  CAS  Google Scholar 

  6. Fernandez I, Frenking G (2007) Faraday Discuss 135:403

    Article  CAS  Google Scholar 

  7. Schleyer PVR, Jiao H, Hommes NJVE, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669

    Article  CAS  Google Scholar 

  8. Steiner E, Soncini A, Fowler PW (2006) J Phys Chem A 110:12882

    Article  CAS  Google Scholar 

  9. Krygowski TM, Ejsmont K, Stepien BT, Cyranski MK, Poater J, Sola M (2004) J Org Chem 69:6634

    Article  CAS  Google Scholar 

  10. Beachley OT Jr (1970) J Am Chem Soc 92:5372

    Article  CAS  Google Scholar 

  11. Dunkin TR, Beachley OT Jr (1974) Inorg Chem 13:1768

    Article  Google Scholar 

  12. Nelson JT, Pietro WJ (1989) Inorg Chem 28:544

    Article  CAS  Google Scholar 

  13. Del Bene JE, Yanez M, Alkorta I, Elguero J (2009) J Chem Theory Comput 5:2239

    Article  Google Scholar 

  14. Baranac-Stojanović M (2014) Chem Eur J 20:16558

    Article  Google Scholar 

  15. Ghosh D, Periyasamy G, Pati SK (2011) Phys Chem Chem Phys 13:20627

    Article  CAS  Google Scholar 

  16. Srivastava AK, Misra N (2015) New J Chem 39:2483

    Article  CAS  Google Scholar 

  17. Srivastava AK, Misra N (2015) Chem Phys Lett 625:5

    Article  CAS  Google Scholar 

  18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT (2010)

  19. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys. Rev. B 37:785

    Article  CAS  Google Scholar 

  21. Zhurko GA, Zhurko DA (2012) Chemcraft Version 1:7

    Google Scholar 

  22. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJVE (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  23. Schleyer PVR, Jiao H (1996) Pure Appl Chem 68:209

    CAS  Google Scholar 

  24. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974

    Article  CAS  Google Scholar 

  25. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  26. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  27. Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1855

    Article  CAS  Google Scholar 

  28. Brown HC, Okamoto Y (1958) J Am Chem Soc 80:4979

    Article  CAS  Google Scholar 

  29. Baranac-Stojanović M (2013) J Phys Chem A 117:11540

    Article  Google Scholar 

  30. Stasyuk OA, Szatylowicz H, Krygowski TM (2014) Org Biomol Chem 12:6476

    Article  CAS  Google Scholar 

  31. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Bioorg. Med. Chem. 12:5533

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author, A. K. Srivastava, wishes to acknowledge Council of Scientific and Industrial Research (CSIR), India, for Senior Research Fellowship (SRF) [Grant No. 09/107(0359)/2012-EMR-I].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K., Pandey, S.K. & Misra, N. The aromaticity and electronic properties of monosubstituted benzene, borazine and diazadiborine rings: an ab initio MP2 study. Theor Chem Acc 135, 158 (2016). https://doi.org/10.1007/s00214-016-1918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1918-5

Keywords

Navigation