A first principles investigation on the electron donor ability of synthetic melatonin derivatives: implications for their antioxidant activity

Regular Article
Part of the following topical collections:
  1. Festschrift in honour of A. Vela

Abstract

The electron donor ability of 37 melatonin (MLT) derivatives was investigated at the LC-ωPBE/6–311+G(d) level of theory, which was chosen based on a benchmark study using the experimental vertical ionization energy of MLT as the reference value. Twenty-three of these derivatives had been already synthesized, while 14 are proposed here for the first time. Those with better electron donor ability were identified using vertical ionization energies and the full electron donor acceptor map, both in aqueous solution. They are expected to have the best antioxidant activity provided that the main reaction mechanism ruling such activity is the electron transfer reaction from the MLT derivatives to free radicals. The drug-likeness of the studied compounds was analyzed using the Lipinski and Ghose rules, as well as the Veber criteria. Their synthetic availability and toxicity were also estimated. Considering the calculated data, altogether, two of the already synthesized compounds are proposed as the best prospects for being tested as oral drugs, with therapeutic uses as antioxidants. In addition, two of the derivatives designed here are proposed as the best candidates to be synthesized and tested for antioxidant activity, with potential to be used as oral drugs. These results might motivate the synthesis of these compounds; thus, their potential role as protectors against oxidative stress—and the associated health issues—could be experimentally tested.

Keywords

DFT Ionization energies Melatonin analogues Oxidative stress Toxicity LogP 

References

  1. 1.
    Tekiner-Gulbas B, Westwell AD, Suzen S (2013) Oxidative stress in carcinogenesis: new synthetic compounds with dual effects upon free radicals and cancer. Curr Med Chem 20(36):4451–4459CrossRefGoogle Scholar
  2. 2.
    Matsuda M, Shimomura I (2014) Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev Endocr Metab Disord 15(1):1–10CrossRefGoogle Scholar
  3. 3.
    Eren E, Ellidag HY, Cekin Y, Ayoglu RU, Sekercioglu AO, Yilmaz N (2014) Heart valve disease: the role of calcidiol deficiency, elevated parathyroid hormone levels and oxidative stress in mitral and aortic valve insufficiency. Redox Rep 19(1):34–39CrossRefGoogle Scholar
  4. 4.
    Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716CrossRefGoogle Scholar
  5. 5.
    Pohanka M (2014) Alzheimer’s disease and oxidative stress: a review. Curr Med Chem 21(3):356–364CrossRefGoogle Scholar
  6. 6.
    Pimentel C, Batista-Nascimento L, Rodrigues-Pousada C, Menezes RA (2012) Oxidative stress in Alzheimer’s and Parkinson’s diseases: insights from the yeast Saccharomyces cerevisiae. Oxid Med Cell Longev 2012:132146CrossRefGoogle Scholar
  7. 7.
    Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71(16):2997–3025CrossRefGoogle Scholar
  8. 8.
    Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multi-tasking molecule. Prog Brain Res 181:127–151CrossRefGoogle Scholar
  9. 9.
    Reiter RJ, Tan DX, Galano A (2014) Melatonin: exceeding expectations. Physiology (Bethesda) 29(5):325–333Google Scholar
  10. 10.
    Reiter RJ, Tan DX, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20(4):7396–7437CrossRefGoogle Scholar
  11. 11.
    Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ (2015) Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr Med Chem 22(22):2690–2711CrossRefGoogle Scholar
  12. 12.
    Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51(1):1–16CrossRefGoogle Scholar
  13. 13.
    Hardeland R (2005) Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27(2):119–130CrossRefGoogle Scholar
  14. 14.
    Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42(1):28–42CrossRefGoogle Scholar
  15. 15.
    Jahnke G, Marr M, Myers C, Wilson R, Travlos G, Price C (1999) Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol Sci 50(2):271–279CrossRefGoogle Scholar
  16. 16.
    Ceraulo L, Ferrugia M, Tesoriere L, Segreto S, Livrea MA, Turco Liveri V (1999) Interactions of melatonin with membrane models: portioning of melatonin in AOT and lecithin reversed micelles. J Pineal Res 26(2):108–112CrossRefGoogle Scholar
  17. 17.
    Bonnefont-Rousselot D, Collin F (2010) Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology 278(1):55–67CrossRefGoogle Scholar
  18. 18.
    Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9(3–4):137–159CrossRefGoogle Scholar
  19. 19.
    Gurer-Orhan H, Suzen S (2015) Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr Med Chem 22(4):490–499CrossRefGoogle Scholar
  20. 20.
    Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolite, AFMK and AMK. J Pineal Res 54(3):245–257CrossRefGoogle Scholar
  21. 21.
    Reiter RJ, Tan DX, Jou MJ, Korkmaz A, Manchester LC, Paredes SD (2008) Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. Neuro Endocrinol Lett 29(4):391–398Google Scholar
  22. 22.
    Galano A, Medina ME, Tan DX, Reiter RJ (2015) Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res 58(1):107–116CrossRefGoogle Scholar
  23. 23.
    Álvarez-Diduk R, Galano A, Tan DX, Reiter RJ (2015) N-Acetylserotonin and 6-hydroxymelatonin against oxidative stress: implications for the overall protection exerted by melatonin. J Phys Chem B 119(27):8535–8543CrossRefGoogle Scholar
  24. 24.
    Suzen S (2013) Melatonin and synthetic analogs as antioxidants. Curr Drug Del 10(1):71–75CrossRefGoogle Scholar
  25. 25.
    Johns JR, Platts JA (2014) Theoretical insight into the antioxidant properties of melatonin and derivatives. Org Biomol Chem 12(39):7820–7827CrossRefGoogle Scholar
  26. 26.
    Tsia PL, Hu MK (2003) Free radical scavenging and antioxidative activity of melatonin derivatives. J Pharm Pharmacol 55(12):1655–1660CrossRefGoogle Scholar
  27. 27.
    Ates-Alagoz Z, Coban T, Buyukbingol E (2006) Synthesis and antioxidant activity of new tetrahydro-naphthalene-indole derivatives as retinoid and melatonin analogs. Arch Pharm 339(4):193–200CrossRefGoogle Scholar
  28. 28.
    Ateş-Alagöz Z, Coban T, Suzen S (2005) A comparative study: evaluation of antioxidant activity of melatonin and some indole derivatives. Med Chem Res 14(3):169–179CrossRefGoogle Scholar
  29. 29.
    Suzen S, Bozkaya P, Coban T, Nebioǧlu D (2006) Investigation of the in vitro antioxidant behaviour of some 2-phenylindole derivatives: discussion on possible antioxidant mechanisms and comparison with melatonin. J Enzyme Inhib Med Chem 21(4):405–411CrossRefGoogle Scholar
  30. 30.
    Shirinzadeh H, Eren B, Gurer-Orhan H, Suzen S, Özden S (2010) Novel indole-based analogs of melatonin: synthesis and in vitro antioxidant activity studies. Molecules 15(4):2187–2202CrossRefGoogle Scholar
  31. 31.
    Yilmaz AD, Coban T, Suzen S (2012) Synthesis and antioxidant activity evaluations of melatonin-based analogue indole-hydrazide/hydrazone derivatives. J Enzyme Inhib Med Chem 27(3):428–436CrossRefGoogle Scholar
  32. 32.
    Gürkök G, Coban T, Suzen S (2009) Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: synthesis and structure–activity relationships. J Enzyme Inhib Med Chem 24(2):506–515CrossRefGoogle Scholar
  33. 33.
    Suzen S, Cihaner SS, Coban T (2012) Synthesis and comparison of antioxidant properties of indole-based melatonin analogue indole amino acid derivatives. Chem Biol Drug Des 79(1):76–83CrossRefGoogle Scholar
  34. 34.
    Galano A (2016) Computational-aided design of melatonin analogues with outstanding multifunctional antioxidant capacity. RSC Adv 6(27):22951–22963CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  36. 36.
    Cannington PH, Ham NS (1983) He(I) and He(II) photoelectron spectra of glycine and related molecules. J Electron Spectrosc Relat Phenom 32(2):139–151CrossRefGoogle Scholar
  37. 37.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396CrossRefGoogle Scholar
  38. 38.
    Martinez A, Vargas R, Galano A (2009) What is important to prevent oxidative stress? A theoretical study on electron-transfer reactions between carotenoids and free radicals. J Phys Chem B 113(35):12113–12120CrossRefGoogle Scholar
  39. 39.
    Martínez A, Rodríguez-Girones MA, Barbosa A, Costas M (2008) Donator acceptor map for carotenoids, melatonin and vitamins. J Phys Chem A 112(38):9037–9042CrossRefGoogle Scholar
  40. 40.
    Galano A (2007) Relative antioxidant efficiency of a large series of carotenoids in terms of one electron transfer reactions. J Phys Chem B 111(44):12898–12908CrossRefGoogle Scholar
  41. 41.
    Boda K, Seidel T, Gasteiger J (2007) Structure and reaction based evaluation of synthetic accessibility. J Comput Aided Mol Des 21(6):311–325CrossRefGoogle Scholar
  42. 42.
    Bonnet P (2012) Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists. Eur J Med Chem 54:679–689CrossRefGoogle Scholar
  43. 43.
    Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatical P, Öberg T, Dao P, Cherkasov A, Tetko IV (2008) Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J Chem Inf Model 48(4):766–784CrossRefGoogle Scholar
  44. 44.
    Galano A (2016) Computational-aided design of melatonin analogues with outstanding multifunctional antioxidant capacity. RSC Adv 6(27):22951–22963CrossRefGoogle Scholar
  45. 45.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 46(1–3):3–26CrossRefGoogle Scholar
  46. 46.
    Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1(1):55–68CrossRefGoogle Scholar
  47. 47.
    Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623CrossRefGoogle Scholar
  48. 48.
    Leeson PD, Davis AM (2004) Time-related differences in the physical property profiles of oral drugs. J Med Chem 47(25):6338–6348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMéxicoMexico

Personalised recommendations