Skip to main content

Three fundamental questions on one of our best water oxidation catalysts: a critical perspective

Abstract

Nickel oxyhydroxide (NiOOH) is considered to be one of the best-known catalysts for the water oxidation reaction. Recently, progress has been made in pushing the limits of water splitting efficiency by incorporating NiOOH in photo-electrochemical cell architectures. Despite these cutting-edge advances, some basic questions have yet been fully answered. This perspective highlights the three most critical questions that are considered to be the very first step for any theoretical investigation. We suggest possible ways to answer these questions from a theoretician’s perspective. Progress toward this direction is expected to shed light on the origin of NiOOH’s success.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473

    CAS  Article  Google Scholar 

  2. Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F (2015) Chem Rev 115:9869–9921

    CAS  Article  Google Scholar 

  3. Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev 43:7520–7535

    CAS  Article  Google Scholar 

  4. Kronawitter CX, Zegkinoglou I, Shen SH, Liao P, Cho IS, Zandi O, Liu YS, Lashgari K, Westin G, Guo JH, Himpsel FJ, Carter EA, Zheng XL, Hamann TW, Koel BE, Mao SS, Vayssieres L (2014) Energy Environ Sci 7:3100–3121

    CAS  Article  Google Scholar 

  5. Toroker MC (2014) J Phys Chem C 118:23162–23167

    CAS  Article  Google Scholar 

  6. Zandi O, Hamann TW (2015) Phys Chem Chem Phys 17:22485–22503

    CAS  Article  Google Scholar 

  7. Briggs GWD, Jones E, Wynne-Jones WFK (1955) Trans Faraday Soc 51:1433–1442

    CAS  Article  Google Scholar 

  8. Yu X, Zhang M, Yuan W, Shi G (2015) J Mater Chem A 3:6921–6928

    CAS  Article  Google Scholar 

  9. Malara F, Minguzzi A, Marelli M, Morandi S, Psaro R, Dal Santo V, Naldoni A (2015) ACS Catal 5:5292–5300

    CAS  Article  Google Scholar 

  10. Tamirat AG, Su W-N, Dubale AA, Chen H-M, Hwang B-J (2015) J Mater Chem A 3:5949–5961

    CAS  Article  Google Scholar 

  11. Young KMH, Hamann TW (2014) Chem Commun 50:8727–8730

    CAS  Article  Google Scholar 

  12. Xu D, Fu Z, Wang D, Lin Y, Sun Y, Meng D, Feng Xie T (2015) Phys Chem Chem Phys 17:23924–23930

    CAS  Article  Google Scholar 

  13. Trotochaud L, Mills TJ, Boettcher SW (2013) J Phys Chem Lett 4:931–935

    CAS  Article  Google Scholar 

  14. Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) J Am Chem Soc 134:17253–17261

    CAS  Article  Google Scholar 

  15. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452–8455

    CAS  Article  Google Scholar 

  16. Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Science 340:60–63

    CAS  Article  Google Scholar 

  17. Landon J, Demeter E, İnoğlu N, Keturakis C, Wachs IE, Vasić R, Frenkel AI, Kitchin JR (2012) ACS Catal 2:1793–1801

    CAS  Article  Google Scholar 

  18. Louie MW, Bell AT (2013) J Am Chem Soc 135:12329–12337

    CAS  Article  Google Scholar 

  19. Nardi KL, Yang N, Dickens CF, Strickler AL, Bent SF (2015) Adv Energy Mater 5:1–10

  20. Qi J, Zhang W, Xiang R, Liu K, Wang H-Y, Chen M, Han Y, Cao R (2015) Adv Sci 2:1–8

  21. Gong M, Dai H (2015) Nano Res 8:23–39

    CAS  Article  Google Scholar 

  22. Chemelewski WD, Rosenstock JR, Mullins CB (2014) J Mater Chem A 2:14957–14962

    CAS  Article  Google Scholar 

  23. Burke MS, Zou S, Enman LJ, Kellon JE, Gabor CA, Pledger E, Boettcher SW (2015) J Phys Chem Lett 6:3737–3742

    CAS  Article  Google Scholar 

  24. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) J Am Chem Soc 136:6744–6753

    CAS  Article  Google Scholar 

  25. Corrigan DA (1987) J Electrochem Soc 134:377–384

    CAS  Article  Google Scholar 

  26. Li Y-F, Selloni A (2014) ACS Catal 4:1148–1153

    CAS  Article  Google Scholar 

  27. Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng M-J, Sokaras D, Weng T-C, Alonso-Mori R, Davis RC, Bargar JR, Nørskov JK, Nilsson A, Bell AT (2015) J Am Chem Soc 137:1305–1313

    CAS  Article  Google Scholar 

  28. Oliva P, Leonardi J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, Fievet F, de Guibert A (1982) J Power Sources 8:229–255

    CAS  Article  Google Scholar 

  29. Oesten R, Wohlfahrt-Mehrens M, Ströbele S, Kasper M, Huggins RA (1996) Ionics 2:293–301

    CAS  Article  Google Scholar 

  30. Hall DS, Lockwood DJ, Bock C, MacDougall BR (2015) Proc Math Phys Eng Sci R Soc 471:20140792

    Article  Google Scholar 

  31. Casas-Cabanas M, Canales-Vázquez J, Rodríguez-Carvajal J, Palacín MR (2007) J Am Chem Soc 129:5840–5842

    CAS  Article  Google Scholar 

  32. Li Y-F, Selloni A (2014) J Phys Chem Lett 5:3981–3985

    CAS  Article  Google Scholar 

  33. Delaplane RG, Ibers JA, Ferraro JR, Rush JJ (1969) J Chem Phys 50:1920–1927

    CAS  Article  Google Scholar 

  34. Chen J, Selloni A (2013) J Phys Chem C 117:20002–20006

    CAS  Article  Google Scholar 

  35. Tkalych AJ, Yu K, Carter EA (2015) J Phys Chem C. doi:10.1021/acs.jpcc.5b08481

    Google Scholar 

  36. Görlin M, Gliech M, de Araújo JF, Dresp S, Bergmann A, Strasser P (2016) Catal Today 262:65–73

    Article  Google Scholar 

  37. Gutiérrez G, Johansson B (2002) Phys Rev B 65:104202

    Article  Google Scholar 

  38. Chagarov E, Kummel AC (2008) ECS Trans 16:773–785

    CAS  Article  Google Scholar 

  39. Wang Y, Lv J, Zhu L, Ma Y (2012) Comput Phys Commun 183:2063–2070

    CAS  Article  Google Scholar 

  40. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276

    CAS  Article  Google Scholar 

  41. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    CAS  Article  Google Scholar 

  42. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    CAS  Article  Google Scholar 

  43. Toroker MC, Kanan DK, Alidoust N, Isseroff LY, Liao P, Carter EA (2011) Phys Chem Chem Phys 13:16644–16654

    CAS  Article  Google Scholar 

  44. Toroker MC, Carter EA (2013) J Mater Chem A 1:2474–2484

    CAS  Article  Google Scholar 

  45. Logsdail AJ, Scanlon DO, Catlow CRA, Sokol AA (2014) Phys Rev B 90:155106

    Article  Google Scholar 

  46. Liang Y, Huang S, Soklaski R, Yang L (2013) Appl Phys Lett 103:042106

    Article  Google Scholar 

  47. Wu Y, Chan MKY, Ceder G (2011) Phys Rev B 83:235301

    Article  Google Scholar 

  48. Ping Y, Sundararaman R, Goddard WA III (2015) Phys Chem Chem Phys 17:30499–30509

    CAS  Article  Google Scholar 

  49. Ratcliff EL, Meyer J, Steirer KX, Garcia A, Berry JJ, Ginley DS, Olson DC, Kahn A, Armstrong NR (2011) Chem Mater 23:4988–5000

    CAS  Article  Google Scholar 

  50. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

    Article  Google Scholar 

  51. Sawatzky GA, Allen JW (1984) Phys Rev Lett 53:2339–2342

    CAS  Article  Google Scholar 

  52. Cai T, Han H, Yu Y, Gao T, Du J, Hao L (2009) Phys B 404:89–94

    CAS  Article  Google Scholar 

  53. Huang P, Carter EA (2008) Annu Rev Phys Chem 59:261–290

    CAS  Article  Google Scholar 

  54. Dong Y, Zhang P, Kou Y, Yang Z, Li Y, Sun X (2015) Catal Lett 145:1541–1548

    CAS  Article  Google Scholar 

  55. Carpenter MK, Corrigan DA (1989) J Electrochem Soc 136:1022–1026

    CAS  Article  Google Scholar 

  56. Varkey AJ, Fort AF (1993) Thin Solid Films 235:47–50

    CAS  Article  Google Scholar 

  57. de PR Moreira I, Illas F, Martin RL (2002) Phys Rev B 2002(65):155102

    Article  Google Scholar 

  58. Muscat J, Wander A, Harrison NM (2001) Chem Phys Lett 342:397–401

    CAS  Article  Google Scholar 

  59. Marsman M, Paier J, Stroppa A, Kresse G (2008) J Phys Condens Matter 20:064201

    CAS  Article  Google Scholar 

  60. Klimeš J, Kaltak M, Kresse G (2014) Phys Rev B 90:075125

    Article  Google Scholar 

  61. Alidoust N, Toroker MC, Carter EA (2014) J Phys Chem B 118:7963–7971

    CAS  Article  Google Scholar 

  62. Alidoust N, Toroker MC, Keith JA, Carter EA (2014) ChemSusChem 7:195–201

    CAS  Article  Google Scholar 

  63. Mosey NJ, Liao P, Carter EA (2008) J Chem Phys 129:014103

    Article  Google Scholar 

  64. Berland K, Hyldgaard P (2014) Phys Rev B 89:035412

    Article  Google Scholar 

  65. Garcia-Ratés M, López N (2016) J Chem Theory Comput 12:1331–1341

    Article  Google Scholar 

  66. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  67. Averkiev BB, Truhlar DG (2011) Catal Sci Technol 1:1526–1529

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science Foundation (Grant No. 152/11). The COST Action IC1208 is acknowledged for funding travel that promoted this research. V.B. acknowledges the Marsilio Ficino Fellowship of the Solar Fuels I-CORE. J.Z. acknowledges a fellowship by the Israel Ministry of Aliyah and Immigrant Absorption.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maytal Caspary Toroker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fidelsky, V., Butera, V., Zaffran, J. et al. Three fundamental questions on one of our best water oxidation catalysts: a critical perspective. Theor Chem Acc 135, 162 (2016). https://doi.org/10.1007/s00214-016-1915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1915-8

Keywords

  • Water splitting
  • Density functional theory (DFT)
  • Nickel oxides
  • Oxygen evolution reaction (OER)
  • Oxyhydroxide