Skip to main content
Log in

On the different strength of photoacids

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In spite of the detailed information provided by advanced time-resolved spectroscopy, the understanding of the excited-state proton transfer (ESPT) reactivity remains difficult to obtain at molecular level. In this work we studied three photoacids showing different strength: the 8-hydroxy-1,3,6-pyrenetrisulfonate weak photoacid, the N-methyl-6-hydroxyquinolinium strong photoacid and the phenol-carboxyether dipicolinium cyanine (QCy9) superphotoacid, focusing on the intermolecular ESPT toward a solvent molecule or a base molecule in aqueous solution. To this aim, the ground and the first singlet excited-state potential energy surfaces of the three systems were characterized by means of the time-dependent density functional theory and a hybrid implicit/explicit model of the solvent. Main structural and photophysical features of the photoacids were assessed and satisfactorily compared with the experimental data. Energy profiles along the PT coordinate were analyzed in both the electronic states. We reproduced many important features of the photoacidity experimentally observed. The results suggest that the relative strength is mainly due to the different extent of charge transfer caused by the electronic transition in proximity of the acid group. Remarkably, we found that even in the case of the strongest photoacid (QCy9), showing a ESPT rate as rapid as to escape the solvent dynamics control, the PT is modulated and supported by the first solvation shell of the proton-accepting molecule. However, a complete understanding of this fascinating field needs the full account for the electronic and the molecular dynamics in play at different timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ireland J, Wyatt P (1976) Adv Phys Org Chem 12(13):221

    Google Scholar 

  2. Demchenko AP, Tang KC, Chou PT (2013) Chem Soc Rev 42(3):1379

    Article  CAS  Google Scholar 

  3. Domcke W, Sobolewski AL (2003) Science 302(5651):1693

    Article  CAS  Google Scholar 

  4. Simkovitch R, Shomer S, Gepshtein R, Huppert D (2014) J Phys Chem B 119(6):2253

    Article  Google Scholar 

  5. Pérez-Lustres JL, Rodriguez-Prieto F, Mosquera M, Senyushkina TA, Ernsting NP, Kovalenko SA (2007) J Am Chem Soc 129:5408

    Article  Google Scholar 

  6. Wang Y, Liu W, Tang L, Oscar B, Han F, Fang C (2013) J Phys Chem A 117:6024

    Article  CAS  Google Scholar 

  7. Han F, Liu W, Fang C (2013) Chem Phys 442:204

    Article  Google Scholar 

  8. Liu W, Han F, Smith C, Fang C (2012) J Phys Chem B 116:10535

    Article  CAS  Google Scholar 

  9. Westlake BC, Paul JJ, Bettis SE, Hampton SD, Mehl BP, Meyer TJ, Papanikolas JM (2012) J Phys Chem B 116(51):14886

    Article  CAS  Google Scholar 

  10. Leiderman P, Genosar L, Huppert D (2005) J Phys Chem A 109(27):5965

    Article  CAS  Google Scholar 

  11. Simkovitch R, Shomer S, Gepshtein R, Huppert D (2014) J Photochem Photobiol A 277:90

    Article  CAS  Google Scholar 

  12. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109(19):8218

    Article  CAS  Google Scholar 

  13. Runge E, Gross EK (1984) Phys Rev Lett 52(12):997

    Article  CAS  Google Scholar 

  14. Savarese M, Netti PA, Rega N, Adamo C, Ciofini I (2014) Phys Chem Chem Phys 16(18):8661

    Article  CAS  Google Scholar 

  15. Raucci U, Savarese M, Adamo C, Ciofini I, Rega N (2015) J Phys Chem B 119(6):2650

    Article  CAS  Google Scholar 

  16. Savarese M, Netti PA, Adamo C, Rega N, Ciofini I (2013) J Phys Chem B 117(50):16165

    Article  CAS  Google Scholar 

  17. Le Bahers T, Adamo C, Ciofini I (2011) J Chem Theory Comput 7(8):2498

    Article  Google Scholar 

  18. Siwick BJ, Bakker HJ (2007) J Am Chem Soc 129(44):13412

    Article  CAS  Google Scholar 

  19. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24(6):669

    Article  CAS  Google Scholar 

  20. Barone V, Cossi M (1998) J Phys Chem A 102(11):1995

    Article  CAS  Google Scholar 

  21. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, vol 16. Oxford University Press, Oxford

    Google Scholar 

  22. Becke AD (1993) J Chem Phys 98(7):5648

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98(2):1372

    Article  CAS  Google Scholar 

  24. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1):51

    Article  CAS  Google Scholar 

  25. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999

    Article  CAS  Google Scholar 

  26. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J Chem Phys 124(9):094107

    Article  Google Scholar 

  27. Improta R (2008) Phys Chem Chem Phys 10:2656

    Article  CAS  Google Scholar 

  28. Corni S, Cammi R, Mennucci B, Tomasi J (2005) J Chem Phys 123:134512

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, MennucciB, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.2. Gaussian Inc. Wallingford CT 2009

  30. Karton-Lifshin N, Albertazzi L, Bendikov M, Baran PS, Shabat D (2012) J Am Chem Soc 134(50):20412

    Article  CAS  Google Scholar 

  31. Reed AE, Weinhold F (1985) J Chem Phys 83:1736

    Article  CAS  Google Scholar 

  32. Avila Ferrer F, Cerezo J, Stendardo E, Improta R, Santoro F (2013) J Chem Theory Comput 4(9):2072

    Article  Google Scholar 

  33. Jacquemin D, Perpete EA, Scuseria GE, Ciofini I, Adamo C (2008) J Chem Theory Comput 4(1):123

    Article  CAS  Google Scholar 

  34. Petrone A, Cerezo J, Avila Ferrer FJ, Donati G, Improta R, Rega N, Santoro F (2015) J Phys Chem A 119(21):5426

    Article  CAS  Google Scholar 

  35. Petrone A, Donati G, Caruso P, Rega N (2014) J Am Chem Soc 136(42):14866

    Article  CAS  Google Scholar 

  36. Walfaren GE (2012) J Chem Phys 47:114

    Google Scholar 

  37. Petrone A, Lingerfelt D, Rega N, Li X (2014) Phys Chem Chem Phys 16:24457

    Article  CAS  Google Scholar 

  38. Rega N, Brancato G, Petrone A, Caruso P, Barone V (2011) J Chem Phys 134(7):074504

    Article  Google Scholar 

  39. Rega N, Brancato G, Barone V (2006) Chem Phys Lett 422(4):367

    Article  CAS  Google Scholar 

  40. Brancato G, Barone V, Rega N (2007) Theor Chem Acc 117(5–6):1001

    Article  CAS  Google Scholar 

  41. Brancato G, Rega N, Barone V (2008) J Chem Phys 128(14):144501

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Gaussian Inc. (Wallingford, CT) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Rega.

Additional information

Published as part of the special collection of articles “Health & Energy from the Sun”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3463 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimino, P., Raucci, U., Donati, G. et al. On the different strength of photoacids. Theor Chem Acc 135, 117 (2016). https://doi.org/10.1007/s00214-016-1879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1879-8

Keywords

Navigation