Optical absorption spectrum of the N3 solar cell sensitizer by second-order multireference perturbation theory

  • Mariachiara Pastore
  • Filippo De Angelis
  • Celestino Angeli
Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective

Abstract

Here we report second-order n-electron valence state perturbation theory excited state calculations on the low-lying transitions of the [Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] complex, better known as the N3 dye, both in vacuo and water solution. The present results provide unprecedented insights into the crucial role of the solvation effects, previously reported at density functional theory (DFT) and time-dependent DFT (TDDFT) level of theory, to adequately reproduce the optical absorption spectrum. We find that the NEVPT2 results in gas phase, even if slightly blueshifted, already provide a reliable description and assignation of the electronic structure and low-lying excited states of N3, whereas these are achieved in a DFT/TDDFT approach only by means of the solvent, which properly polarizes the ground-state frontier molecular orbitals. Then, inclusion of the solvent at the NEVPT2 level does not substantially modify the ground-state electronic structure as well as the excited states picture found in vacuo, solely yielding the expected spectral blueshift.

Keywords

N3 dye Excited states MRPT NEVPT TDDFT Dye-sensitized solar cells MLCT PCM 

Supplementary material

214_2016_1868_MOESM1_ESM.docx (448 kb)
Supplementary material 1 (DOCX 448 kb)

References

  1. 1.
    O’Regan B, Grätzel M (1991) Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Grätzel M (2009) Acc Chem Res 42:1788–1798CrossRefGoogle Scholar
  3. 3.
    Hagfeldt A, Peter L (2010) Dye-sensitized solar cells, EPFL Press, LausanneGoogle Scholar
  4. 4.
    Hardin BE, Snaith HJ, McGehee MD (2012) Nat Photonics 6:162CrossRefGoogle Scholar
  5. 5.
    Bai Y, Mora-Seró I, De Angelis F, Bisquert J, Wang P (2014) Chem Rev 114:10095–10130CrossRefGoogle Scholar
  6. 6.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  7. 7.
    Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835–16847CrossRefGoogle Scholar
  8. 8.
    Nazeeruddin MK, Péchy P, Grätzel M (1997) Chem Commun 18:1705–1706CrossRefGoogle Scholar
  9. 9.
    Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V et al (2001) J Am Chem Soc 123:1613–1624CrossRefGoogle Scholar
  10. 10.
    Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M (2012) Energy Environ Sci 5:6057–6060CrossRefGoogle Scholar
  11. 11.
    Azzaroli N, Lobello MG, Lapini A, Iagatti A, Bussotti L, Di Donato M, Calogero G, Pastore M, De Angelis F, Foggi P (2015) Phys Chem Chem Phys 17:21594–21604CrossRefGoogle Scholar
  12. 12.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2010) J Phys Chem C 114:6054–6061CrossRefGoogle Scholar
  13. 13.
    Schiffmann F, VandeVondele J, Hutter J, Wirz R, Urakawa A, Baiker A (2010) J Phys Chem C 114:8398–8404CrossRefGoogle Scholar
  14. 14.
    Pastore M, De Angelis F (2014) Topics Current Chemistry, vol 352. Springer, Berlin, pp 151–236Google Scholar
  15. 15.
    Fantacci S, De Angelis F, Selloni A (2003) J Am Chem Soc 125:4381–4387CrossRefGoogle Scholar
  16. 16.
    De Angelis F, Fantacci S, Selloni A (2005) Chem Phys Lett 415:115–120CrossRefGoogle Scholar
  17. 17.
    De Angelis F, Fantacci S, Selloni A (2004) Chem Phys Lett 389:204CrossRefGoogle Scholar
  18. 18.
    Monat JE, Rodriguez JH, McCusker JK (2002) J Phys Chem A 106:7399–7406CrossRefGoogle Scholar
  19. 19.
    Jäger M, Freitag L, González L (2015) Coord Chem Rev 304–305:146–165CrossRefGoogle Scholar
  20. 20.
    Daniel C (2015) Coord Chem Rev 282–283:19–32CrossRefGoogle Scholar
  21. 21.
    Piau RE, Guillon T, Lebon E, Perrot N, Alary F, Boggio-Pasqua M, Heully J-L, Juris A, Sutra P, Igau A (2012) New J Chem 36:2484–2492CrossRefGoogle Scholar
  22. 22.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2007) J Am Chem Soc 129:14156–14157CrossRefGoogle Scholar
  23. 23.
    De Angelis F, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Nano Lett 7:3189–3195CrossRefGoogle Scholar
  24. 24.
    De Angelis F, Fantacci S, Selloni A (2008) Nanotechnology 19:424002CrossRefGoogle Scholar
  25. 25.
    De Angelis F, Fantacci S, Mosconi E, Nazeeruddin MK, Grätzel M (2011) J Phys Chem C 115:8825–8831CrossRefGoogle Scholar
  26. 26.
    De Angelis F, Fantacci S, Gebauer R (2011) J Phys Chem Lett 2:813–817CrossRefGoogle Scholar
  27. 27.
    Pastore M, Fantacci S, De Angelis F (2013) J Phys Chem C 117:3685–3700CrossRefGoogle Scholar
  28. 28.
    Pastore M, Selloni A, Fantacci S, De Angelis F (2014) Topics Current Chemistry, vol 347. Springer, Berlin, pp 1–45Google Scholar
  29. 29.
    Labat F, Ciofini I, Hratchian HP, Frisch MJ, Raghavachari K, Adamo C (2011) J Phys Chem C 115:4297–4306CrossRefGoogle Scholar
  30. 30.
    Ronca E, Angeli C, Belpassi L, De Angelis F, Tarantelli F, Pastore M (2014) J Chem Theory Comput 10:4014–4024CrossRefGoogle Scholar
  31. 31.
    Pastore M, Mosconi E, De Angelis F, Grätzel M (2010) J Phys Chem C 114:7205–7212CrossRefGoogle Scholar
  32. 32.
    Jacquemin D, Perpete EA, Vydrov OA, Scuseria GE, Adamo C (2007) J Chem Phys 127:094102CrossRefGoogle Scholar
  33. 33.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  34. 34.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  35. 35.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  36. 36.
    Vlček A Jr, Záliš S (2007) Coord Chem Rev 251:258–287CrossRefGoogle Scholar
  37. 37.
    Charlot M-F, Aukauloo A (2007) J Phys Chem A 111:11661–11672CrossRefGoogle Scholar
  38. 38.
    Stoyanov SR, Villegas JM, Rillema DP (2004) Inorg Chem Commun 7:838–841CrossRefGoogle Scholar
  39. 39.
    Fantacci S, De Angelis F, Sgamellotti A, Re N (2004) Chem Phys Lett 396:43–48CrossRefGoogle Scholar
  40. 40.
    Escudero D, González L (2011) J Chem Theory Comput 8:203–213CrossRefGoogle Scholar
  41. 41.
    Chantzis A, Very T, Monari A, Assfeld X (2012) J Chem Theory Comput 8:1536–1541CrossRefGoogle Scholar
  42. 42.
    Pierloot K, Vancoillie S (2006) J Chem Phys 125:124303CrossRefGoogle Scholar
  43. 43.
    Gindensperger E, Koppel H, Daniel C (2010) Chem Commun 46:8225–8227CrossRefGoogle Scholar
  44. 44.
    Delgado A, Corni S, Goldoni G (2012) Theor Chem Acc 131:1–14CrossRefGoogle Scholar
  45. 45.
    Escudero D, Thiel W (2014) J Chem Phys 140:194105CrossRefGoogle Scholar
  46. 46.
    Domingo A, Carvajal M, de Graaf C, Sivalingam K, Neese F, Angeli C (2012) Theor Chem Acc 131:1–13CrossRefGoogle Scholar
  47. 47.
    Angeli C, Pastore M, Cimiraglia C (2007) Theor Chem Acc 117:743–754CrossRefGoogle Scholar
  48. 48.
    Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483–5488CrossRefGoogle Scholar
  49. 49.
    Nakano H, Uchiyama R, Hirao K (2002) J Comput Chem 23:1166–1175CrossRefGoogle Scholar
  50. 50.
    Pastore M, Angeli C, Cimiraglia R (2007) Theor Chem Acc 118:35–46CrossRefGoogle Scholar
  51. 51.
    Pastore M, Helal W, Evangelisti S, Leininger T, Malrieu J-P, Maynau D, Angeli C, Cimiraglia R (2008) J Chem Phys 128:174102CrossRefGoogle Scholar
  52. 52.
    Rivalta I, Nenov A, Cerullo G, Mukamel S, Garavelli M (2014) Int J Quantum Chem 114:85–93CrossRefGoogle Scholar
  53. 53.
    Valsson O, Angeli C, Filippi C (2012) Phys Chem Chem Phys 14:11015–11020CrossRefGoogle Scholar
  54. 54.
    Gozem S, Huntress M, Schapiro I, Lindh R, Granovsky AA, Angeli C, Olivucci M (2012) J Chem Theory Comput 8:4069–4080CrossRefGoogle Scholar
  55. 55.
    Conti I, Nenov A, Hofinger S, Altavilla SF, Rivalta I, Dumont E, Orlandi G, Garavelli M (2015) Phys Chem Chem Phys 17:7291–7302CrossRefGoogle Scholar
  56. 56.
    Nenov A, Rivalta I, Cerullo G, Mukamel S, Garavelli M (2014) J Phys Chem Lett 5:767–771CrossRefGoogle Scholar
  57. 57.
    Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu J-P (2001) J Chem Phys 114:10252–10264CrossRefGoogle Scholar
  58. 58.
    Angeli C, Cimiraglia R, Malrieu J-P (2001) Chem Phys Lett 350:297–305CrossRefGoogle Scholar
  59. 59.
    Neese F (2012) WIREs: Comp Mol Sci 2:73–78Google Scholar
  60. 60.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, 1st edn. Gaussian, Inc, WallingfordGoogle Scholar
  61. 61.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  62. 62.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835CrossRefGoogle Scholar
  63. 63.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143–152CrossRefGoogle Scholar
  64. 64.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805CrossRefGoogle Scholar
  65. 65.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  66. 66.
    Pizzoli G, Lobello MG, Carlotti B, Elisei F, Nazeeruddin MK, Vitillaro G, De Angelis F (2012) Dalton Trans 41:11841–11848CrossRefGoogle Scholar
  67. 67.
    Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer C-H, Grätzel M (1999) Inorg Chem 38:6298–6305CrossRefGoogle Scholar
  68. 68.
    Reichardt C (1994) Chem Rev 94:2319–2358CrossRefGoogle Scholar
  69. 69.
    Domingo A, Angeli C, de Graaf C, Robert V (2015) J Comput Chem 36:861–869CrossRefGoogle Scholar
  70. 70.
    Giner E, Angeli C (2015) J Chem Phys 143:124305CrossRefGoogle Scholar
  71. 71.
    Angeli C, Borini S, Cestari M, Cimiraglia R (2004) J Chem Phys 121:4043–4049CrossRefGoogle Scholar
  72. 72.
    Pastore M, Angeli C, Cimiraglia R (2006) Chem Phys Lett 426:445–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mariachiara Pastore
    • 1
    • 2
  • Filippo De Angelis
    • 1
  • Celestino Angeli
    • 3
  1. 1.Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO)Istituto CNR di Scienze e Tecnologie MolecolariPerugiaItaly
  2. 2.CNRS, Théorie-Modélisation-SimulationSRSMCVandoeuvre-lès-NancyFrance
  3. 3.Dipartimento di Scienze Chimiche e FarmaceuticheUniversità di FerraraFerraraItaly

Personalised recommendations