Skip to main content
Log in

Assessment of the basis set effect on the structural and electronic properties of organic-protected gold nanoclusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have investigated the structural and optical properties of five monolayer-protected gold nanoclusters with a combination of exchange–correlation functionals, namely B-PBE for the geometry relaxation and CAM-B3LYP for the time-dependent calculations. We have tested the accuracy of five different basis sets in reproducing the experimental structures of these nanoclusters, and we have found that even a rather small basis set (single zeta) can outperform a significantly larger one (double zeta) if some selected atoms are treated with polarization functions. Namely, the sulfur and phosphorous atoms of the capping thiols and phosphines usually are hypervalent when bonded to the gold inner core; therefore, polarization functions allow them significantly more structural flexibility. With the two best performing basis sets, we carried out optical calculations and found that the resulting UV–Vis profiles are largely similar, in particular the energy and orbital contributions of the optical gaps are very close. The results support the use of the small basis set proposed here to investigate larger nanoclusters with general hybrid and range-corrected hybrid functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campbell CT (2004) Science 306:234–235

    Article  CAS  Google Scholar 

  2. Cong H, Becker CF, Elliott SJ, Grinstaff MW, Porco JA (2010) J Am Chem Soc 132:7514–7518

    Article  CAS  Google Scholar 

  3. Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P (2008) J Phys Chem C 112:11758–11766

    Article  CAS  Google Scholar 

  4. Bauld R, Hesari M, Workentin MS, Fanchini G (2014) Nanoscale 6:7570–7575

    Article  CAS  Google Scholar 

  5. Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Science 280:2098–2101

    Article  CAS  Google Scholar 

  6. Alivisatos AP (1996) J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  7. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) Proc Natl Acad Sci USA 105:9157–9162

    Article  CAS  Google Scholar 

  8. Shichibu Y, Negishi Y, Tsukuda T, Teranishi T (2005) J Am Chem Soc 127:13464–13465

    Article  CAS  Google Scholar 

  9. Das A, Li T, Nobusada K, Zeng Q, Rosi NL, Jin R (2012) J Am Chem Soc 134:20286–20289

    Article  CAS  Google Scholar 

  10. Park S, Lee D (2012) Langmuir 28:7049–7054

    Article  CAS  Google Scholar 

  11. Nunokawa K, Onaka S, Ito M, Horibe M, Yonezawa T, Nishihara H, Ozeki T, Chiba H, Watase S, Nakamoto M (2006) J Organomet Chem 691:638–642

    Article  CAS  Google Scholar 

  12. Häkkinen H, Barnett RN, Landman U (1999) Phys Rev Lett 82:3264–3267

    Article  Google Scholar 

  13. Goh J-Q, Malola S, Häkkinen H, Akola J (2013) J Phys Chem C 117:22079–22086

    Article  CAS  Google Scholar 

  14. Hartmann MJ, Häkkinen H, Millstone JE, Lambrecht DS (2015) J Phys Chem C 119(15):8290–8298

    Article  CAS  Google Scholar 

  15. Muniz-Miranda F, Menziani MC, Pedone A (2015) J Phys Chem A 119:5088–5098

    Article  CAS  Google Scholar 

  16. Bousquet B, Cherif M, Huang K, Rabilloud F (2015) J Phys Chem C 119:4268–4277

    Article  CAS  Google Scholar 

  17. Barcaro G, Sementa L, Fortunelli A, Stener M (2014) J Phys Chem C 118:12450–12458

    Article  CAS  Google Scholar 

  18. Barcaro G, Sementa L, Fortunelli A, Stener M (2014) J Phys Chem C 118:28101–28108

    Article  CAS  Google Scholar 

  19. Gutrath BS, Englert U, Wang Y, Simon U (2013) Eur J Inorg Chem 2013:2002–2006

    Article  CAS  Google Scholar 

  20. Muniz-Miranda F, Menziani MC, Pedone A (2014) J Phys Chem C 118:7532–7544

    Article  CAS  Google Scholar 

  21. Muniz-Miranda F, Menziani MC, Pedone A (2014) Phys Chem Chem Phys 16:18749–18758

    Article  CAS  Google Scholar 

  22. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430–433

    Article  CAS  Google Scholar 

  23. Maksymovych P, Sorescu DC, Yates JT (2006) Phys Rev Lett 97:146103

    Article  Google Scholar 

  24. Häkkinen H (2012) Nat Chem 4:443–455

    Article  Google Scholar 

  25. Shichibu Y, Kamei Y, Konishi K (2012) Chem Commun 48:7559–7561

    Article  CAS  Google Scholar 

  26. Das A, Li T, Li G, Nobusada K, Zeng C, Rosi NL, Jin R (2014) Nanoscale 6:6458–6462

    Article  CAS  Google Scholar 

  27. Teo BK, Shi X, Zhang H (1992) J Am Chem Soc 114:2743

    Article  CAS  Google Scholar 

  28. Goh J-Q, Akola J (2015) J Phys Chem C 119:21165–21172

    Article  CAS  Google Scholar 

  29. Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  30. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  31. Aikens CM (2008) J Phys Chem C 112:19797–19800

    Article  CAS  Google Scholar 

  32. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) J Am Chem Soc 130:5883–5885

    Article  CAS  Google Scholar 

  33. Provorse MR, Aikens CM (2010) J Am Chem Soc 132:1302–1310

    Article  CAS  Google Scholar 

  34. Hulkko E, Lopez-Acevedo O, Koivisto J, Levi-Kalisman Y, Kornberg RD, Pettersson M, Häkkinen H (2011) J Am Chem Soc 133:3752–3755

    Article  CAS  Google Scholar 

  35. Hadley A, Aikens CM (2010) J Phys Chem C 114:18134–18138

    Article  CAS  Google Scholar 

  36. Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM (2010) J Am Chem Soc 132:8210–8218

    Article  CAS  Google Scholar 

  37. Aikens CM (2011) J Phys Chem Lett 2:99–104

    Article  CAS  Google Scholar 

  38. Cardini G, Muniz-Miranda M (2002) J Phys Chem B 106:6875–6880

    Article  CAS  Google Scholar 

  39. Muniz-Miranda M, Pagliai M, Muniz-Miranda F, Schettino V (2011) Chem Commun 47:3138–3140

    Article  CAS  Google Scholar 

  40. Muniz-Miranda M, Pergolese B, Muniz-Miranda F, Caporali S (2014) J Alloys Compd 615:S357–S360

    Article  CAS  Google Scholar 

  41. Muniz-Miranda M, Muniz-Miranda F, Caporali S Beilstein (2014) J Nanotechnol 5:2489–2497

    CAS  Google Scholar 

  42. Muniz-Miranda M, Muniz-Miranda F, Pedone A (2016) Phys Chem Chem Phys 18:5974–5980

    Article  CAS  Google Scholar 

  43. Muniz-Miranda F, Menziani MC, Pedone A (2015) J Phys Chem C 119:10766–10775

    Article  CAS  Google Scholar 

  44. Muniz-Miranda F, Presti D, Menziani MC, Pedone A (2015) Theor Chem Acc 135:1–9

    Google Scholar 

  45. Wang S, Meng X, Das A, Li T, Song Y, Cao T, Zhu X, Zhu M, Jin R (2014) Angew Chem Int Ed 53:2376–2380

    Article  CAS  Google Scholar 

  46. Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) J Am Chem Soc 132:8280–8281

    Article  CAS  Google Scholar 

  47. Frisch MJ et al (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  48. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  50. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  51. Dennington R, Keith T, Millam J (2009) GaussView Version 5. Semichem Inc., Shawnee Mission KS

    Google Scholar 

  52. http://www.jmol.org. Version: Jmol 12.2.2 + dfsg-1

  53. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  54. Lu T, Chen F (2011) Acta Chim Sin 69:2393–2406

    CAS  Google Scholar 

  55. Dunning TH Jr, Hay PJ (1985) J Chem Phys 82:270

    Article  Google Scholar 

  56. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  57. Dunning TH Jr, Hay PJ (1985) J Chem Phys 82:284

    Article  Google Scholar 

  58. Dunning TH Jr, Hay PJ (1985) J Chem Phys 82:299

    Article  Google Scholar 

  59. Couty M, Hall MB (1996) J Comput Chem 17:1359–1370

    Article  CAS  Google Scholar 

  60. Schuchardt K, Didier B, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus T (2007) J Chem Inf Model 47:1045–1052

    Article  CAS  Google Scholar 

  61. Goel S, Velizhanin KA, Piryatinski A, Tretiak S, Ivanov SA (2010) J Phys Chem Lett 1:927–931

    Article  CAS  Google Scholar 

  62. Hirshfeld F (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  63. Kronik L, Stein T, Refaely-Abramson S, Baer R (2012) J Chem Theory Comput 8:1515–1531

    Article  CAS  Google Scholar 

  64. Baerends EJ, Gritsenko OV, van Meer R (2013) Phys Chem Chem Phys 15:16408–16425

    Article  CAS  Google Scholar 

  65. Jiang DE, Kühn M, Tang Q, Weigend F (2014) J Phys Chem Lett 5:3286–3289

    Article  CAS  Google Scholar 

  66. Devadas MS, Bairu S, Qian H, Sinn E, Jin R, Ramakrishna GJ (2011) Phys Chem Lett 2:2752–2758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work and F.M.–M.’s postdoctoral fellowship at UniMoRE were supported by the Italian “Ministero dell’Istruzione, dell’Università e della Ricerca” (MIUR) through the “Futuro in Ricerca” (FIRB) Grant RBFR1248UI_002 entitled “Novel Multiscale Theoretical/Computational Strategies for the Design of Photo and Thermo responsive Hybrid Organic–Inorganic Components for Nanoelectronic Circuits,” and the “Programma di ricerca di rilevante interesse nazionale” (PRIN) Grant 2010C4R8M8 entitled “Nanoscale functional Organization of (bio)Molecules and Hybrids for targeted Application in Sensing, Medicine and Biotechnology” is also acknowledged. CINECA granted computation time within the research project AUNANMR-HP10CJ027S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Muniz-Miranda.

Additional information

Published as part of the special collection of articles “Charge Transfer Modeling in Chemistry”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniz-Miranda, F., Menziani, M.C. & Pedone, A. Assessment of the basis set effect on the structural and electronic properties of organic-protected gold nanoclusters. Theor Chem Acc 135, 94 (2016). https://doi.org/10.1007/s00214-016-1856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1856-2

Keywords

Navigation