Ability of density functional theory methods to accurately model the reaction energy pathways of the oxidation of CO on gold cluster: A benchmark study

Abstract

Gold clusters are currently regarded as new-generation catalysts owing to their exceptional efficiency in accelerating several classes of reactions. Density functional theory (DFT) is the method of choice for the investigation of energy pathways of reactions assisted by metal nanoparticles due to their computational efficiency. However, the reliability of such theoretical studies depends to a large extent on the choice of the DFT functional used. In the present work, the performance of a series of DFT-based functionals to accurately model the prototypical CO oxidation reaction catalyzed by a \(\hbox {Au}_3\) cluster has been examined by comparing the results with those obtained from high-level ab initio CCSD(T) method. This comparison study has been carried along the two possible pathways [Eley–Rideal (ER) and the Langmuir–Hinshelwood (LH)]. No significant differences among the DFT functionals were observed in terms of obtaining the geometries of stationary points including the transition states with minor exceptions. However, the adsorption energies, barrier heights and reaction energies calculated using the DFT methods lie in a wide range with some methods showing high deviations from the CCSD(T) results. Our calculations suggest that the adsorption energy values are sensitive to the inclusion of long-range correction and dispersion correction, whereas the barrier heights do not show much dependence on the inclusion of dispersion effects. The percentage of Hartree–Fock exchange included in the DFT functional also plays a crucial role in predicting the correct pathway. Based on this extensive benchmark study, it is suggested that the computationally less expensive hybrid density functionals, PBE0, B3PW91 and B3P86, are better suited for accurate modeling of this class of reactions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  2. 2.

    Lopez-Acevedo O, Kacprzak KA, Akola J, Häkkinen H (2010) Nat Chem 2:329–334

    CAS  Article  Google Scholar 

  3. 3.

    Stratakis M, Garcia H (2012) Chem Rev 112:4469–4506

    CAS  Article  Google Scholar 

  4. 4.

    Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  5. 5.

    Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129–2132

    Article  Google Scholar 

  6. 6.

    Weiher N, Beesley AM, Tsapatsaris N, Delannoy L, Louis C, van Bokhoven JA, Schroeder SL (2007) J Am Chem Soc 129:2240–2241

    CAS  Article  Google Scholar 

  7. 7.

    Haruta M (1997) Catal Today 36:153–166

    CAS  Article  Google Scholar 

  8. 8.

    Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650

    CAS  Article  Google Scholar 

  9. 9.

    Meerson O, Sitja G, Henry CR (2005) Eur Phys J D 34:119–124

    CAS  Article  Google Scholar 

  10. 10.

    Della Pina C, Falletta E, Prati L, Rossi M (2008) Chem Soc Rev 37:2077–2095

    CAS  Article  Google Scholar 

  11. 11.

    Della Pina C, Falletta E, Rossi M (2012) Chem Soc Rev 41:350–369

    CAS  Article  Google Scholar 

  12. 12.

    Hutchings GJ (2008) Chem Commun 10:1148–1164

    Article  Google Scholar 

  13. 13.

    Edwards JK, Parker SF, Pritchard J, Piccinini M, Freakley SJ, He Q, Carley AF, Kiely CJ, Hutchings GJ (2013) Catal Sci Technol 3:812–818

    CAS  Article  Google Scholar 

  14. 14.

    Edwards JK, Solsona B, Ntainjua E, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Science 323:1037–1041

    CAS  Article  Google Scholar 

  15. 15.

    Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701–2705

    CAS  Article  Google Scholar 

  16. 16.

    Ricca A, Bauschlicher CW Jr (1995) Theor Chem Acc 92:123–131

    CAS  Google Scholar 

  17. 17.

    Siegbahn PE, Borowski T (2006) Acc Chem Res 39:729–738

    CAS  Article  Google Scholar 

  18. 18.

    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    CAS  Article  Google Scholar 

  19. 19.

    Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757–10816

    CAS  Article  Google Scholar 

  20. 20.

    Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  21. 21.

    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12,974–12,980

    CAS  Article  Google Scholar 

  22. 22.

    Pu J, Truhlar DG (2005) J Phys Chem A 109:773–778

    CAS  Article  Google Scholar 

  23. 23.

    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811–4815

    CAS  Article  Google Scholar 

  24. 24.

    Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:3898–3906

    CAS  Article  Google Scholar 

  25. 25.

    Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715–2719

    CAS  Article  Google Scholar 

  26. 26.

    Goerigk L, Grimme S (2010) J Chem Theory Comput 7:291–309

    Article  Google Scholar 

  27. 27.

    Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670–6688

    CAS  Article  Google Scholar 

  28. 28.

    Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985

    CAS  Article  Google Scholar 

  29. 29.

    Laury ML, Wilson AK (2013) J Chem Theory Comput 9:3939–3946

    CAS  Article  Google Scholar 

  30. 30.

    Wolf LM, Thiel W (2014) J Org Chem 79:12,136–12,147

    CAS  Article  Google Scholar 

  31. 31.

    Chen ZN, Chan KY, Pulleri JK, Kong J, Hu H (2015) Inorg Chem 54:1314–1324

    CAS  Article  Google Scholar 

  32. 32.

    Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458:746–749

    CAS  Article  Google Scholar 

  33. 33.

    Freund HJ, Meijer G, Scheffler M, Schlögl R, Wolf M (2011) Angew Chem Int Ed 50:10,064–10,094

    CAS  Article  Google Scholar 

  34. 34.

    Zhang C, Yoon B, Landman U (2007) J Am Chem Soc 129:2228–2229

    CAS  Article  Google Scholar 

  35. 35.

    Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11,262–11,263

    CAS  Article  Google Scholar 

  36. 36.

    Xu Y, Mavrikakis M (2003) J Phys Chem B 107:9298–9307

    CAS  Article  Google Scholar 

  37. 37.

    Liu ZP, Hu P, Alavi A (2002) J Am Chem Soc 124:14,770–14,779

    CAS  Article  Google Scholar 

  38. 38.

    Liu ZP, Gong XQ, Kohanoff J, Sanchez C, Hu P (2003) Phys Rev Lett 91:266,102–266,106

    Article  Google Scholar 

  39. 39.

    Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674–676

    CAS  Article  Google Scholar 

  40. 40.

    Jena NK, Chandrakumar KRS, Ghosh SK (2012) J Phys Chem C 116:17,063–17,069

    CAS  Article  Google Scholar 

  41. 41.

    Ehlers A, Bhme M, Dapprich S, Gobbi A, Hllwarth A, Jonas V, Khler K, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    CAS  Article  Google Scholar 

  42. 42.

    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872

    CAS  Article  Google Scholar 

  43. 43.

    Andrae D, Huermann U, Dolg M, Stoll H, Preu H (1990) Theor Chim Acta 77:123–141

    CAS  Article  Google Scholar 

  44. 44.

    Fernández EM, Soler JM, Balbás LC (2006) Phys Rev B 73:235,433–235,441

    Article  Google Scholar 

  45. 45.

    Andrews L, Wang X, Manceron L, Balasubramanian K (2004) J Phys Chem A 108:2936–2940

    CAS  Article  Google Scholar 

  46. 46.

    Hou S, Li R, Qian Z, Zhang J, Shen Z, Zhao X, Xue Z (2005) J Phys Chem A 109:8356–8360

    CAS  Article  Google Scholar 

  47. 47.

    Dos Santos HF, Paschoal D, Burda JV (2012) Chem Phys Lett 548:64–70

    Article  Google Scholar 

  48. 48.

    Fan T, Chen X, Sun J, Lin Z (2012) Organometallics 31:4221–4227

    CAS  Article  Google Scholar 

  49. 49.

    Faza ON, Rodríguez RÁ, López CS (2011) Theor Chem Acc 128:647–661

    CAS  Article  Google Scholar 

  50. 50.

    Hariharan P, Pople J (1974) Mol Phys 27:209–214

    CAS  Article  Google Scholar 

  51. 51.

    Hariharan P, Pople J (1972) Chem Phys Lett 16:217–219

    CAS  Article  Google Scholar 

  52. 52.

    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976–984

    CAS  Article  Google Scholar 

  53. 53.

    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    CAS  Article  Google Scholar 

  54. 54.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision C.01

  55. 55.

    Prestianni Antonio et al (2009) J Mol Struct (Theochem) 1:34–40

    Article  Google Scholar 

  56. 56.

    Prestianni Antonio et al (2013) Chem Eur J 14:4577–4585

    Article  Google Scholar 

  57. 57.

    Schroder D, Shaik S, Schwarz H (2000) Acc Chem Res 3:139–145

    Article  Google Scholar 

  58. 58.

    Handy NC, Cohen AJ (2001) Mol Phys 99:403–412

    CAS  Article  Google Scholar 

  59. 59.

    Hoe WM, Cohen AJ, Handy NC (2001) Chem Phys Lett 341:319–328

    CAS  Article  Google Scholar 

  60. 60.

    Xu X, Goddard WA (2004) Proc Natl Acad Sci USA 101:2673–2677

    CAS  Article  Google Scholar 

  61. 61.

    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146,401–146,405

    Article  Google Scholar 

  62. 62.

    Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  63. 63.

    Becke AD (1988) Phys Rev A 38:3098–3100

    CAS  Article  Google Scholar 

  64. 64.

    Adamo C, Barone V (1998) J Chem Phys 108:664–675

    CAS  Article  Google Scholar 

  65. 65.

    Peverati R, Truhlar DG (2012) J Phys Chem Lett 3:117–124

    CAS  Article  Google Scholar 

  66. 66.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  67. 67.

    Van Voorhis T, Scuseria GE (1998) J Chem Phys 109:400–410

    Article  Google Scholar 

  68. 68.

    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    CAS  Article  Google Scholar 

  69. 69.

    Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12,129–12,137

    CAS  Article  Google Scholar 

  70. 70.

    Heyd J, Scuseria GE (2004a) J Chem Phys 121:1187–1192

    CAS  Article  Google Scholar 

  71. 71.

    Heyd J, Scuseria GE (2004b) J Chem Phys 120:7274–7280

    CAS  Article  Google Scholar 

  72. 72.

    Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) J Chem Phys 123:174,101–174,109

    Article  Google Scholar 

  73. 73.

    Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219,906–219,927

    Article  Google Scholar 

  74. 74.

    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    CAS  Article  Google Scholar 

  75. 75.

    Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037

    CAS  Article  Google Scholar 

  76. 76.

    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    CAS  Article  Google Scholar 

  77. 77.

    Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234,109–234,114

    Article  Google Scholar 

  78. 78.

    Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:074,106–074,111

    Article  Google Scholar 

  79. 79.

    Vydrov OA, Scuseria GE, Perdew JP (2007) J Chem Phys 126:154,109–154,113

    Article  Google Scholar 

  80. 80.

    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    CAS  Article  Google Scholar 

  81. 81.

    Minenkov Y, Singstad A, Occhipinti G, Jensen VR (2012) Dalton Trans 41:5526–5541

    CAS  Article  Google Scholar 

  82. 82.

    Grimme S (2006) J Chem Phys 124:034,108–034,111

    Article  Google Scholar 

  83. 83.

    Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397–3406

    CAS  Article  Google Scholar 

  84. 84.

    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    CAS  Article  Google Scholar 

  85. 85.

    Kang R, Lai W, Yao J, Shaik S, Chen H (2012) J Chem Theory Comput 8:3119–3127

    CAS  Article  Google Scholar 

  86. 86.

    Sun Y, Chen H (2013) J Chem Theory Comput 9:4735–4743

    CAS  Article  Google Scholar 

  87. 87.

    Weymuth T, Couzijn EP, Chen P, Reiher M (2014) J Chem Theory Comput 10:3092–3103

    CAS  Article  Google Scholar 

  88. 88.

    Řezáč J, Hobza P (2013) J Chem Theory Comput 9:2151–2155

    Article  Google Scholar 

  89. 89.

    Wu ZJ, Shi JS, Zhang SY, Zhang HJ (2004) Phys Rev A 69:064,502–064,506

    Article  Google Scholar 

  90. 90.

    Wang LL, Johnson D (2005) J Phys Chem B 109:23,113–23,117

    CAS  Article  Google Scholar 

  91. 91.

    Adamo C, Barone V (2000) Theor Chem Acc 105:169–172

    CAS  Article  Google Scholar 

  92. 92.

    Paier J, Marsman M, Kresse G (2007) J Chem Phys 127:024,103–024,105

    Article  Google Scholar 

  93. 93.

    Stroppa A, Termentzidis K, Paier J, Kresse G, Hafner J (2007) Phys Rev B 76:195,440–195,459

    Article  Google Scholar 

  94. 94.

    Johansson MP, Sundholm D, Vaara J (2004) Angew Chem Int Ed 43:2678–2681

    CAS  Article  Google Scholar 

  95. 95.

    Rai S, Ehara M, Priyakumar UD (2015) Phys Chem Chem Phys 17:24,275–24,281

    CAS  Article  Google Scholar 

  96. 96.

    Xie YP, Gong XG (2010) J Chem Phys 132:244,302–244,309

    Article  Google Scholar 

  97. 97.

    Assadollahzadeh B, Schwerdtfeger P (2009) J Chem Phys 131:064,306–064,317

    Article  Google Scholar 

  98. 98.

    Grimme S (2011) WIREs Comput Mol Sci 1:211–228

    CAS  Article  Google Scholar 

  99. 99.

    Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131:816–825

    CAS  Article  Google Scholar 

Download references

Acknowledgments

S. R. acknowledges support from CSIR for SRF fellowship. M. E. acknowledges the financial support from a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS), Nanotechnology Platform Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to U. Deva Priyakumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 495 KB)

Supplementary material 2 (xyz 0 KB)

Supplementary material 3 (xyz 0 KB)

Supplementary material 4 (xyz 0 KB)

Supplementary material 5 (xyz 0 KB)

Supplementary material 6 (xyz 0 KB)

Supplementary material 7 (xyz 0 KB)

Supplementary material 8 (xyz 0 KB)

Supplementary material 9 (xyz 0 KB)

Supplementary material 10 (xyz 0 KB)

Supplementary material 11 (xyz 0 KB)

Supplementary material 12 (xyz 0 KB)

Supplementary material 13 (xyz 0 KB)

Supplementary material 14 (xyz 0 KB)

Supplementary material 15 (xyz 0 KB)

Supplementary material 16 (xyz 0 KB)

Supplementary material 17 (xyz 0 KB)

Supplementary material 18 (xyz 0 KB)

Supplementary material 19 (xyz 0 KB)

Supplementary material 20 (xyz 0 KB)

Supplementary material 21 (xyz 0 KB)

Supplementary material 22 (xyz 0 KB)

Supplementary material 23 (xyz 0 KB)

Supplementary material 24 (xyz 0 KB)

Supplementary material 25 (xyz 0 KB)

Supplementary material 26 (xyz 0 KB)

Supplementary material 27 (xyz 0 KB)

Supplementary material 28 (xyz 0 KB)

Supplementary material 29 (xyz 0 KB)

Supplementary material 30 (xyz 0 KB)

Supplementary material 31 (xyz 0 KB)

Supplementary material 32 (xyz 0 KB)

Supplementary material 33 (xyz 0 KB)

Supplementary material 34 (xyz 0 KB)

Supplementary material 35 (xyz 0 KB)

Supplementary material 36 (xyz 0 KB)

Supplementary material 37 (xyz 0 KB)

Supplementary material 38 (xyz 0 KB)

Supplementary material 39 (xyz 0 KB)

Supplementary material 40 (xyz 0 KB)

Supplementary material 41 (xyz 0 KB)

Supplementary material 42 (xyz 0 KB)

Supplementary material 43 (xyz 0 KB)

Supplementary material 44 (xyz 0 KB)

Supplementary material 45 (xyz 0 KB)

Supplementary material 46 (xyz 0 KB)

Supplementary material 47 (xyz 0 KB)

Supplementary material 48 (xyz 0 KB)

Supplementary material 49 (xyz 0 KB)

Supplementary material 50 (xyz 0 KB)

Supplementary material 51 (xyz 0 KB)

Supplementary material 52 (xyz 0 KB)

Supplementary material 53 (xyz 0 KB)

Supplementary material 54 (xyz 0 KB)

Supplementary material 55 (xyz 0 KB)

Supplementary material 56 (xyz 0 KB)

Supplementary material 57 (xyz 0 KB)

Supplementary material 58 (xyz 0 KB)

Supplementary material 59 (xyz 0 KB)

Supplementary material 60 (xyz 0 KB)

Supplementary material 61 (xyz 0 KB)

Supplementary material 62 (xyz 0 KB)

Supplementary material 63 (xyz 0 KB)

Supplementary material 64 (xyz 0 KB)

Supplementary material 65 (xyz 0 KB)

Supplementary material 66 (xyz 0 KB)

Supplementary material 67 (xyz 0 KB)

Supplementary material 68 (xyz 0 KB)

Supplementary material 69 (xyz 0 KB)

Supplementary material 70 (xyz 0 KB)

Supplementary material 71 (xyz 0 KB)

Supplementary material 72 (xyz 0 KB)

Supplementary material 73 (xyz 0 KB)

Supplementary material 74 (xyz 0 KB)

Supplementary material 75 (xyz 0 KB)

Supplementary material 76 (xyz 0 KB)

Supplementary material 77 (xyz 0 KB)

Supplementary material 78 (xyz 0 KB)

Supplementary material 79 (xyz 0 KB)

Supplementary material 80 (xyz 0 KB)

Supplementary material 81 (xyz 0 KB)

Supplementary material 82 (xyz 0 KB)

Supplementary material 83 (xyz 0 KB)

Supplementary material 84 (xyz 0 KB)

Supplementary material 85 (xyz 0 KB)

Supplementary material 86 (xyz 0 KB)

Supplementary material 87 (xyz 0 KB)

Supplementary material 88 (xyz 0 KB)

Supplementary material 89 (xyz 0 KB)

Supplementary material 90 (xyz 0 KB)

Supplementary material 91 (xyz 0 KB)

Supplementary material 92 (xyz 0 KB)

Supplementary material 93 (xyz 0 KB)

Supplementary material 94 (xyz 0 KB)

Supplementary material 95 (xyz 0 KB)

Supplementary material 96 (xyz 0 KB)

Supplementary material 97 (xyz 0 KB)

Supplementary material 98 (xyz 0 KB)

Supplementary material 99 (xyz 0 KB)

Supplementary material 100 (xyz 0 KB)

Supplementary material 101 (xyz 0 KB)

Supplementary material 102 (xyz 0 KB)

Supplementary material 103 (xyz 0 KB)

Supplementary material 104 (xyz 0 KB)

Supplementary material 105 (xyz 0 KB)

Supplementary material 106 (xyz 0 KB)

Supplementary material 107 (xyz 0 KB)

Supplementary material 108 (xyz 0 KB)

Supplementary material 109 (xyz 0 KB)

Supplementary material 110 (xyz 0 KB)

Supplementary material 111 (xyz 0 KB)

Supplementary material 112 (xyz 0 KB)

Supplementary material 113 (xyz 0 KB)

Supplementary material 114 (xyz 0 KB)

Supplementary material 115 (xyz 0 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gurtu, S., Rai, S., Ehara, M. et al. Ability of density functional theory methods to accurately model the reaction energy pathways of the oxidation of CO on gold cluster: A benchmark study. Theor Chem Acc 135, 93 (2016). https://doi.org/10.1007/s00214-016-1852-6

Download citation

Keywords

  • CO oxidation
  • Gold nanocluster
  • Heterogeneous catalysis
  • Reaction kinetics
  • Reaction mechanism