Advertisement

Ability of density functional theory methods to accurately model the reaction energy pathways of the oxidation of CO on gold cluster: A benchmark study

  • Saumya Gurtu
  • Sandhya Rai
  • Masahiro Ehara
  • U. Deva Priyakumar
Regular Article

Abstract

Gold clusters are currently regarded as new-generation catalysts owing to their exceptional efficiency in accelerating several classes of reactions. Density functional theory (DFT) is the method of choice for the investigation of energy pathways of reactions assisted by metal nanoparticles due to their computational efficiency. However, the reliability of such theoretical studies depends to a large extent on the choice of the DFT functional used. In the present work, the performance of a series of DFT-based functionals to accurately model the prototypical CO oxidation reaction catalyzed by a \(\hbox {Au}_3\) cluster has been examined by comparing the results with those obtained from high-level ab initio CCSD(T) method. This comparison study has been carried along the two possible pathways [Eley–Rideal (ER) and the Langmuir–Hinshelwood (LH)]. No significant differences among the DFT functionals were observed in terms of obtaining the geometries of stationary points including the transition states with minor exceptions. However, the adsorption energies, barrier heights and reaction energies calculated using the DFT methods lie in a wide range with some methods showing high deviations from the CCSD(T) results. Our calculations suggest that the adsorption energy values are sensitive to the inclusion of long-range correction and dispersion correction, whereas the barrier heights do not show much dependence on the inclusion of dispersion effects. The percentage of Hartree–Fock exchange included in the DFT functional also plays a crucial role in predicting the correct pathway. Based on this extensive benchmark study, it is suggested that the computationally less expensive hybrid density functionals, PBE0, B3PW91 and B3P86, are better suited for accurate modeling of this class of reactions.

Keywords

CO oxidation Gold nanocluster Heterogeneous catalysis Reaction kinetics Reaction mechanism 

Notes

Acknowledgments

S. R. acknowledges support from CSIR for SRF fellowship. M. E. acknowledges the financial support from a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS), Nanotechnology Platform Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

Supplementary material

214_2016_1852_MOESM1_ESM.pdf (496 kb)
Supplementary material 1 (pdf 495 KB)
214_2016_1852_MOESM2_ESM.xyz (0 kb)
Supplementary material 2 (xyz 0 KB)
214_2016_1852_MOESM3_ESM.xyz (0 kb)
Supplementary material 3 (xyz 0 KB)
214_2016_1852_MOESM4_ESM.xyz (0 kb)
Supplementary material 4 (xyz 0 KB)
214_2016_1852_MOESM5_ESM.xyz (0 kb)
Supplementary material 5 (xyz 0 KB)
214_2016_1852_MOESM6_ESM.xyz (0 kb)
Supplementary material 6 (xyz 0 KB)
214_2016_1852_MOESM7_ESM.xyz (0 kb)
Supplementary material 7 (xyz 0 KB)
214_2016_1852_MOESM8_ESM.xyz (0 kb)
Supplementary material 8 (xyz 0 KB)
214_2016_1852_MOESM9_ESM.xyz (0 kb)
Supplementary material 9 (xyz 0 KB)
214_2016_1852_MOESM10_ESM.xyz (0 kb)
Supplementary material 10 (xyz 0 KB)
214_2016_1852_MOESM11_ESM.xyz (0 kb)
Supplementary material 11 (xyz 0 KB)
214_2016_1852_MOESM12_ESM.xyz (0 kb)
Supplementary material 12 (xyz 0 KB)
214_2016_1852_MOESM13_ESM.xyz (0 kb)
Supplementary material 13 (xyz 0 KB)
214_2016_1852_MOESM14_ESM.xyz (0 kb)
Supplementary material 14 (xyz 0 KB)
214_2016_1852_MOESM15_ESM.xyz (0 kb)
Supplementary material 15 (xyz 0 KB)
214_2016_1852_MOESM16_ESM.xyz (0 kb)
Supplementary material 16 (xyz 0 KB)
214_2016_1852_MOESM17_ESM.xyz (0 kb)
Supplementary material 17 (xyz 0 KB)
214_2016_1852_MOESM18_ESM.xyz (0 kb)
Supplementary material 18 (xyz 0 KB)
214_2016_1852_MOESM19_ESM.xyz (0 kb)
Supplementary material 19 (xyz 0 KB)
214_2016_1852_MOESM20_ESM.xyz (0 kb)
Supplementary material 20 (xyz 0 KB)
214_2016_1852_MOESM21_ESM.xyz (0 kb)
Supplementary material 21 (xyz 0 KB)
214_2016_1852_MOESM22_ESM.xyz (0 kb)
Supplementary material 22 (xyz 0 KB)
214_2016_1852_MOESM23_ESM.xyz (0 kb)
Supplementary material 23 (xyz 0 KB)
214_2016_1852_MOESM24_ESM.xyz (0 kb)
Supplementary material 24 (xyz 0 KB)
214_2016_1852_MOESM25_ESM.xyz (0 kb)
Supplementary material 25 (xyz 0 KB)
214_2016_1852_MOESM26_ESM.xyz (0 kb)
Supplementary material 26 (xyz 0 KB)
214_2016_1852_MOESM27_ESM.xyz (0 kb)
Supplementary material 27 (xyz 0 KB)
214_2016_1852_MOESM28_ESM.xyz (0 kb)
Supplementary material 28 (xyz 0 KB)
214_2016_1852_MOESM29_ESM.xyz (0 kb)
Supplementary material 29 (xyz 0 KB)
214_2016_1852_MOESM30_ESM.xyz (0 kb)
Supplementary material 30 (xyz 0 KB)
214_2016_1852_MOESM31_ESM.xyz (0 kb)
Supplementary material 31 (xyz 0 KB)
214_2016_1852_MOESM32_ESM.xyz (0 kb)
Supplementary material 32 (xyz 0 KB)
214_2016_1852_MOESM33_ESM.xyz (0 kb)
Supplementary material 33 (xyz 0 KB)
214_2016_1852_MOESM34_ESM.xyz (0 kb)
Supplementary material 34 (xyz 0 KB)
214_2016_1852_MOESM35_ESM.xyz (0 kb)
Supplementary material 35 (xyz 0 KB)
214_2016_1852_MOESM36_ESM.xyz (0 kb)
Supplementary material 36 (xyz 0 KB)
214_2016_1852_MOESM37_ESM.xyz (0 kb)
Supplementary material 37 (xyz 0 KB)
214_2016_1852_MOESM38_ESM.xyz (0 kb)
Supplementary material 38 (xyz 0 KB)
214_2016_1852_MOESM39_ESM.xyz (0 kb)
Supplementary material 39 (xyz 0 KB)
214_2016_1852_MOESM40_ESM.xyz (0 kb)
Supplementary material 40 (xyz 0 KB)
214_2016_1852_MOESM41_ESM.xyz (0 kb)
Supplementary material 41 (xyz 0 KB)
214_2016_1852_MOESM42_ESM.xyz (0 kb)
Supplementary material 42 (xyz 0 KB)
214_2016_1852_MOESM43_ESM.xyz (0 kb)
Supplementary material 43 (xyz 0 KB)
214_2016_1852_MOESM44_ESM.xyz (0 kb)
Supplementary material 44 (xyz 0 KB)
214_2016_1852_MOESM45_ESM.xyz (0 kb)
Supplementary material 45 (xyz 0 KB)
214_2016_1852_MOESM46_ESM.xyz (0 kb)
Supplementary material 46 (xyz 0 KB)
214_2016_1852_MOESM47_ESM.xyz (0 kb)
Supplementary material 47 (xyz 0 KB)
214_2016_1852_MOESM48_ESM.xyz (0 kb)
Supplementary material 48 (xyz 0 KB)
214_2016_1852_MOESM49_ESM.xyz (0 kb)
Supplementary material 49 (xyz 0 KB)
214_2016_1852_MOESM50_ESM.xyz (0 kb)
Supplementary material 50 (xyz 0 KB)
214_2016_1852_MOESM51_ESM.xyz (0 kb)
Supplementary material 51 (xyz 0 KB)
214_2016_1852_MOESM52_ESM.xyz (0 kb)
Supplementary material 52 (xyz 0 KB)
214_2016_1852_MOESM53_ESM.xyz (0 kb)
Supplementary material 53 (xyz 0 KB)
214_2016_1852_MOESM54_ESM.xyz (0 kb)
Supplementary material 54 (xyz 0 KB)
214_2016_1852_MOESM55_ESM.xyz (0 kb)
Supplementary material 55 (xyz 0 KB)
214_2016_1852_MOESM56_ESM.xyz (0 kb)
Supplementary material 56 (xyz 0 KB)
214_2016_1852_MOESM57_ESM.xyz (0 kb)
Supplementary material 57 (xyz 0 KB)
214_2016_1852_MOESM58_ESM.xyz (0 kb)
Supplementary material 58 (xyz 0 KB)
214_2016_1852_MOESM59_ESM.xyz (0 kb)
Supplementary material 59 (xyz 0 KB)
214_2016_1852_MOESM60_ESM.xyz (0 kb)
Supplementary material 60 (xyz 0 KB)
214_2016_1852_MOESM61_ESM.xyz (0 kb)
Supplementary material 61 (xyz 0 KB)
214_2016_1852_MOESM62_ESM.xyz (0 kb)
Supplementary material 62 (xyz 0 KB)
214_2016_1852_MOESM63_ESM.xyz (0 kb)
Supplementary material 63 (xyz 0 KB)
214_2016_1852_MOESM64_ESM.xyz (0 kb)
Supplementary material 64 (xyz 0 KB)
214_2016_1852_MOESM65_ESM.xyz (0 kb)
Supplementary material 65 (xyz 0 KB)
214_2016_1852_MOESM66_ESM.xyz (0 kb)
Supplementary material 66 (xyz 0 KB)
214_2016_1852_MOESM67_ESM.xyz (0 kb)
Supplementary material 67 (xyz 0 KB)
214_2016_1852_MOESM68_ESM.xyz (0 kb)
Supplementary material 68 (xyz 0 KB)
214_2016_1852_MOESM69_ESM.xyz (0 kb)
Supplementary material 69 (xyz 0 KB)
214_2016_1852_MOESM70_ESM.xyz (0 kb)
Supplementary material 70 (xyz 0 KB)
214_2016_1852_MOESM71_ESM.xyz (0 kb)
Supplementary material 71 (xyz 0 KB)
214_2016_1852_MOESM72_ESM.xyz (0 kb)
Supplementary material 72 (xyz 0 KB)
214_2016_1852_MOESM73_ESM.xyz (0 kb)
Supplementary material 73 (xyz 0 KB)
214_2016_1852_MOESM74_ESM.xyz (0 kb)
Supplementary material 74 (xyz 0 KB)
214_2016_1852_MOESM75_ESM.xyz (0 kb)
Supplementary material 75 (xyz 0 KB)
214_2016_1852_MOESM76_ESM.xyz (0 kb)
Supplementary material 76 (xyz 0 KB)
214_2016_1852_MOESM77_ESM.xyz (0 kb)
Supplementary material 77 (xyz 0 KB)
214_2016_1852_MOESM78_ESM.xyz (0 kb)
Supplementary material 78 (xyz 0 KB)
214_2016_1852_MOESM79_ESM.xyz (0 kb)
Supplementary material 79 (xyz 0 KB)
214_2016_1852_MOESM80_ESM.xyz (0 kb)
Supplementary material 80 (xyz 0 KB)
214_2016_1852_MOESM81_ESM.xyz (0 kb)
Supplementary material 81 (xyz 0 KB)
214_2016_1852_MOESM82_ESM.xyz (0 kb)
Supplementary material 82 (xyz 0 KB)
214_2016_1852_MOESM83_ESM.xyz (0 kb)
Supplementary material 83 (xyz 0 KB)
214_2016_1852_MOESM84_ESM.xyz (0 kb)
Supplementary material 84 (xyz 0 KB)
214_2016_1852_MOESM85_ESM.xyz (0 kb)
Supplementary material 85 (xyz 0 KB)
214_2016_1852_MOESM86_ESM.xyz (0 kb)
Supplementary material 86 (xyz 0 KB)
214_2016_1852_MOESM87_ESM.xyz (0 kb)
Supplementary material 87 (xyz 0 KB)
214_2016_1852_MOESM88_ESM.xyz (0 kb)
Supplementary material 88 (xyz 0 KB)
214_2016_1852_MOESM89_ESM.xyz (0 kb)
Supplementary material 89 (xyz 0 KB)
214_2016_1852_MOESM90_ESM.xyz (0 kb)
Supplementary material 90 (xyz 0 KB)
214_2016_1852_MOESM91_ESM.xyz (0 kb)
Supplementary material 91 (xyz 0 KB)
214_2016_1852_MOESM92_ESM.xyz (0 kb)
Supplementary material 92 (xyz 0 KB)
214_2016_1852_MOESM93_ESM.xyz (0 kb)
Supplementary material 93 (xyz 0 KB)
214_2016_1852_MOESM94_ESM.xyz (0 kb)
Supplementary material 94 (xyz 0 KB)
214_2016_1852_MOESM95_ESM.xyz (0 kb)
Supplementary material 95 (xyz 0 KB)
214_2016_1852_MOESM96_ESM.xyz (0 kb)
Supplementary material 96 (xyz 0 KB)
214_2016_1852_MOESM97_ESM.xyz (0 kb)
Supplementary material 97 (xyz 0 KB)
214_2016_1852_MOESM98_ESM.xyz (0 kb)
Supplementary material 98 (xyz 0 KB)
214_2016_1852_MOESM99_ESM.xyz (0 kb)
Supplementary material 99 (xyz 0 KB)
214_2016_1852_MOESM100_ESM.xyz (0 kb)
Supplementary material 100 (xyz 0 KB)
214_2016_1852_MOESM101_ESM.xyz (0 kb)
Supplementary material 101 (xyz 0 KB)
214_2016_1852_MOESM102_ESM.xyz (0 kb)
Supplementary material 102 (xyz 0 KB)
214_2016_1852_MOESM103_ESM.xyz (0 kb)
Supplementary material 103 (xyz 0 KB)
214_2016_1852_MOESM104_ESM.xyz (0 kb)
Supplementary material 104 (xyz 0 KB)
214_2016_1852_MOESM105_ESM.xyz (0 kb)
Supplementary material 105 (xyz 0 KB)
214_2016_1852_MOESM106_ESM.xyz (0 kb)
Supplementary material 106 (xyz 0 KB)
214_2016_1852_MOESM107_ESM.xyz (0 kb)
Supplementary material 107 (xyz 0 KB)
214_2016_1852_MOESM108_ESM.xyz (0 kb)
Supplementary material 108 (xyz 0 KB)
214_2016_1852_MOESM109_ESM.xyz (0 kb)
Supplementary material 109 (xyz 0 KB)
214_2016_1852_MOESM110_ESM.xyz (0 kb)
Supplementary material 110 (xyz 0 KB)
214_2016_1852_MOESM111_ESM.xyz (0 kb)
Supplementary material 111 (xyz 0 KB)
214_2016_1852_MOESM112_ESM.xyz (0 kb)
Supplementary material 112 (xyz 0 KB)
214_2016_1852_MOESM113_ESM.xyz (0 kb)
Supplementary material 113 (xyz 0 KB)
214_2016_1852_MOESM114_ESM.xyz (0 kb)
Supplementary material 114 (xyz 0 KB)
214_2016_1852_MOESM115_ESM.xyz (0 kb)
Supplementary material 115 (xyz 0 KB)

References

  1. 1.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408CrossRefGoogle Scholar
  2. 2.
    Lopez-Acevedo O, Kacprzak KA, Akola J, Häkkinen H (2010) Nat Chem 2:329–334CrossRefGoogle Scholar
  3. 3.
    Stratakis M, Garcia H (2012) Chem Rev 112:4469–4506CrossRefGoogle Scholar
  4. 4.
    Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  5. 5.
    Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129–2132CrossRefGoogle Scholar
  6. 6.
    Weiher N, Beesley AM, Tsapatsaris N, Delannoy L, Louis C, van Bokhoven JA, Schroeder SL (2007) J Am Chem Soc 129:2240–2241CrossRefGoogle Scholar
  7. 7.
    Haruta M (1997) Catal Today 36:153–166CrossRefGoogle Scholar
  8. 8.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650CrossRefGoogle Scholar
  9. 9.
    Meerson O, Sitja G, Henry CR (2005) Eur Phys J D 34:119–124CrossRefGoogle Scholar
  10. 10.
    Della Pina C, Falletta E, Prati L, Rossi M (2008) Chem Soc Rev 37:2077–2095CrossRefGoogle Scholar
  11. 11.
    Della Pina C, Falletta E, Rossi M (2012) Chem Soc Rev 41:350–369CrossRefGoogle Scholar
  12. 12.
    Hutchings GJ (2008) Chem Commun 10:1148–1164CrossRefGoogle Scholar
  13. 13.
    Edwards JK, Parker SF, Pritchard J, Piccinini M, Freakley SJ, He Q, Carley AF, Kiely CJ, Hutchings GJ (2013) Catal Sci Technol 3:812–818CrossRefGoogle Scholar
  14. 14.
    Edwards JK, Solsona B, Ntainjua E, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Science 323:1037–1041CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701–2705CrossRefGoogle Scholar
  16. 16.
    Ricca A, Bauschlicher CW Jr (1995) Theor Chem Acc 92:123–131Google Scholar
  17. 17.
    Siegbahn PE, Borowski T (2006) Acc Chem Res 39:729–738CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167CrossRefGoogle Scholar
  19. 19.
    Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757–10816CrossRefGoogle Scholar
  20. 20.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  21. 21.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12,974–12,980CrossRefGoogle Scholar
  22. 22.
    Pu J, Truhlar DG (2005) J Phys Chem A 109:773–778CrossRefGoogle Scholar
  23. 23.
    Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811–4815CrossRefGoogle Scholar
  24. 24.
    Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:3898–3906CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715–2719CrossRefGoogle Scholar
  26. 26.
    Goerigk L, Grimme S (2010) J Chem Theory Comput 7:291–309CrossRefGoogle Scholar
  27. 27.
    Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670–6688CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  29. 29.
    Laury ML, Wilson AK (2013) J Chem Theory Comput 9:3939–3946CrossRefGoogle Scholar
  30. 30.
    Wolf LM, Thiel W (2014) J Org Chem 79:12,136–12,147CrossRefGoogle Scholar
  31. 31.
    Chen ZN, Chan KY, Pulleri JK, Kong J, Hu H (2015) Inorg Chem 54:1314–1324CrossRefGoogle Scholar
  32. 32.
    Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458:746–749CrossRefGoogle Scholar
  33. 33.
    Freund HJ, Meijer G, Scheffler M, Schlögl R, Wolf M (2011) Angew Chem Int Ed 50:10,064–10,094CrossRefGoogle Scholar
  34. 34.
    Zhang C, Yoon B, Landman U (2007) J Am Chem Soc 129:2228–2229CrossRefGoogle Scholar
  35. 35.
    Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11,262–11,263CrossRefGoogle Scholar
  36. 36.
    Xu Y, Mavrikakis M (2003) J Phys Chem B 107:9298–9307CrossRefGoogle Scholar
  37. 37.
    Liu ZP, Hu P, Alavi A (2002) J Am Chem Soc 124:14,770–14,779CrossRefGoogle Scholar
  38. 38.
    Liu ZP, Gong XQ, Kohanoff J, Sanchez C, Hu P (2003) Phys Rev Lett 91:266,102–266,106CrossRefGoogle Scholar
  39. 39.
    Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Science 321:674–676CrossRefGoogle Scholar
  40. 40.
    Jena NK, Chandrakumar KRS, Ghosh SK (2012) J Phys Chem C 116:17,063–17,069CrossRefGoogle Scholar
  41. 41.
    Ehlers A, Bhme M, Dapprich S, Gobbi A, Hllwarth A, Jonas V, Khler K, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114CrossRefGoogle Scholar
  42. 42.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872CrossRefGoogle Scholar
  43. 43.
    Andrae D, Huermann U, Dolg M, Stoll H, Preu H (1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  44. 44.
    Fernández EM, Soler JM, Balbás LC (2006) Phys Rev B 73:235,433–235,441CrossRefGoogle Scholar
  45. 45.
    Andrews L, Wang X, Manceron L, Balasubramanian K (2004) J Phys Chem A 108:2936–2940CrossRefGoogle Scholar
  46. 46.
    Hou S, Li R, Qian Z, Zhang J, Shen Z, Zhao X, Xue Z (2005) J Phys Chem A 109:8356–8360CrossRefGoogle Scholar
  47. 47.
    Dos Santos HF, Paschoal D, Burda JV (2012) Chem Phys Lett 548:64–70CrossRefGoogle Scholar
  48. 48.
    Fan T, Chen X, Sun J, Lin Z (2012) Organometallics 31:4221–4227CrossRefGoogle Scholar
  49. 49.
    Faza ON, Rodríguez RÁ, López CS (2011) Theor Chem Acc 128:647–661CrossRefGoogle Scholar
  50. 50.
    Hariharan P, Pople J (1974) Mol Phys 27:209–214CrossRefGoogle Scholar
  51. 51.
    Hariharan P, Pople J (1972) Chem Phys Lett 16:217–219CrossRefGoogle Scholar
  52. 52.
    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976–984CrossRefGoogle Scholar
  53. 53.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  54. 54.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision C.01Google Scholar
  55. 55.
    Prestianni Antonio et al (2009) J Mol Struct (Theochem) 1:34–40CrossRefGoogle Scholar
  56. 56.
    Prestianni Antonio et al (2013) Chem Eur J 14:4577–4585CrossRefGoogle Scholar
  57. 57.
    Schroder D, Shaik S, Schwarz H (2000) Acc Chem Res 3:139–145CrossRefGoogle Scholar
  58. 58.
    Handy NC, Cohen AJ (2001) Mol Phys 99:403–412CrossRefGoogle Scholar
  59. 59.
    Hoe WM, Cohen AJ, Handy NC (2001) Chem Phys Lett 341:319–328CrossRefGoogle Scholar
  60. 60.
    Xu X, Goddard WA (2004) Proc Natl Acad Sci USA 101:2673–2677CrossRefGoogle Scholar
  61. 61.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146,401–146,405CrossRefGoogle Scholar
  62. 62.
    Perdew JP (1986) Phys Rev B 33:8822–8824CrossRefGoogle Scholar
  63. 63.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  64. 64.
    Adamo C, Barone V (1998) J Chem Phys 108:664–675CrossRefGoogle Scholar
  65. 65.
    Peverati R, Truhlar DG (2012) J Phys Chem Lett 3:117–124CrossRefGoogle Scholar
  66. 66.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  67. 67.
    Van Voorhis T, Scuseria GE (1998) J Chem Phys 109:400–410CrossRefGoogle Scholar
  68. 68.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  69. 69.
    Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12,129–12,137CrossRefGoogle Scholar
  70. 70.
    Heyd J, Scuseria GE (2004a) J Chem Phys 121:1187–1192CrossRefGoogle Scholar
  71. 71.
    Heyd J, Scuseria GE (2004b) J Chem Phys 120:7274–7280CrossRefGoogle Scholar
  72. 72.
    Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) J Chem Phys 123:174,101–174,109CrossRefGoogle Scholar
  73. 73.
    Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219,906–219,927CrossRefGoogle Scholar
  74. 74.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544CrossRefGoogle Scholar
  75. 75.
    Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009–4037CrossRefGoogle Scholar
  76. 76.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  77. 77.
    Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234,109–234,114CrossRefGoogle Scholar
  78. 78.
    Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:074,106–074,111CrossRefGoogle Scholar
  79. 79.
    Vydrov OA, Scuseria GE, Perdew JP (2007) J Chem Phys 126:154,109–154,113CrossRefGoogle Scholar
  80. 80.
    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  81. 81.
    Minenkov Y, Singstad A, Occhipinti G, Jensen VR (2012) Dalton Trans 41:5526–5541CrossRefGoogle Scholar
  82. 82.
    Grimme S (2006) J Chem Phys 124:034,108–034,111CrossRefGoogle Scholar
  83. 83.
    Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397–3406CrossRefGoogle Scholar
  84. 84.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  85. 85.
    Kang R, Lai W, Yao J, Shaik S, Chen H (2012) J Chem Theory Comput 8:3119–3127CrossRefGoogle Scholar
  86. 86.
    Sun Y, Chen H (2013) J Chem Theory Comput 9:4735–4743CrossRefGoogle Scholar
  87. 87.
    Weymuth T, Couzijn EP, Chen P, Reiher M (2014) J Chem Theory Comput 10:3092–3103CrossRefGoogle Scholar
  88. 88.
    Řezáč J, Hobza P (2013) J Chem Theory Comput 9:2151–2155CrossRefGoogle Scholar
  89. 89.
    Wu ZJ, Shi JS, Zhang SY, Zhang HJ (2004) Phys Rev A 69:064,502–064,506CrossRefGoogle Scholar
  90. 90.
    Wang LL, Johnson D (2005) J Phys Chem B 109:23,113–23,117CrossRefGoogle Scholar
  91. 91.
    Adamo C, Barone V (2000) Theor Chem Acc 105:169–172CrossRefGoogle Scholar
  92. 92.
    Paier J, Marsman M, Kresse G (2007) J Chem Phys 127:024,103–024,105CrossRefGoogle Scholar
  93. 93.
    Stroppa A, Termentzidis K, Paier J, Kresse G, Hafner J (2007) Phys Rev B 76:195,440–195,459CrossRefGoogle Scholar
  94. 94.
    Johansson MP, Sundholm D, Vaara J (2004) Angew Chem Int Ed 43:2678–2681CrossRefGoogle Scholar
  95. 95.
    Rai S, Ehara M, Priyakumar UD (2015) Phys Chem Chem Phys 17:24,275–24,281CrossRefGoogle Scholar
  96. 96.
    Xie YP, Gong XG (2010) J Chem Phys 132:244,302–244,309CrossRefGoogle Scholar
  97. 97.
    Assadollahzadeh B, Schwerdtfeger P (2009) J Chem Phys 131:064,306–064,317CrossRefGoogle Scholar
  98. 98.
    Grimme S (2011) WIREs Comput Mol Sci 1:211–228CrossRefGoogle Scholar
  99. 99.
    Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131:816–825CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Saumya Gurtu
    • 1
  • Sandhya Rai
    • 1
  • Masahiro Ehara
    • 2
  • U. Deva Priyakumar
    • 1
  1. 1.Center for Computational Natural Sciences and BioinformaticsInternational Institute of Information TechnologyHyderabadIndia
  2. 2.Research Center for Computational ScienceInstitute for Molecular ScienceMyodaijiJapan

Personalised recommendations