Skip to main content
Log in

Singlet–triplet excitation energies of substituted phenyl cations: a G4(MP2) and G4 theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Singlet–triplet adiabatic excitation energies (AES−T) of the parent and variously substituted phenyl cations, as well as the parent benzannelated derivatives up to anthracenyl, were calculated at the G4(MP2) and G4 levels of theory. The G4(MP2)/G4 AES−T estimates range up to 40 kJ/mol higher than prior density functional theory (DFT)-based predictions for these cations and suggest that AES−T and ground state multiplicity structure–property trends for phenyl cations previously proposed in the literature need to be re-assessed at higher levels of theory. In general, Hartree–Fock, DFT, and semiempirical methods do a poor job describing the singlet–triplet excitation energetics of these systems. Only modest effects of different solvation models (SMD, IEF-PCM, and C-PCM) and different polar protic through apolar aprotic solvents are evident on the calculated AES−T of the phenyl cation. Electron-donating substituents on the phenyl cation substantially lower the AES−T to an extent where some functional groups (–NH2, N(CH3)2, OCH3, and SCH3) can result in triplet ground states depending on their position relative to the cation. In contrast to the phenyl and 1- and 2-naphthyl cations, which are predicted to be ground state singlets, the three parent anthracenyl cations will be ground state triplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lewis ES (1958) Reactivity of the phenyl cation in solution. J Am Chem Soc 80:1371–1373

    Article  CAS  Google Scholar 

  2. Taft RW (1961) Evidence for phenyl cation with an odd number of π-electrons from the aqueous thermal decomposition of the diazonium ion. J Am Chem Soc 83:3350–3351

    Article  CAS  Google Scholar 

  3. Swain CG, Sheats JE, Harbison KG (1975) Evidence for phenyl cation as an intermediate in reactions of benzenediazonium salts in solution. J Am Chem Soc 97:783–790. doi:10.1021/ja00837a016

    Article  CAS  Google Scholar 

  4. Guizzardi B, Mella M, Fagnoni M, Albini A (2003) Photochemical reaction of N, N-dimethyl-4-chloroaniline with dienes: new synthetic paths via a phenyl cation. Chem Eur J 9:1549–1555

    Article  CAS  Google Scholar 

  5. Bergstrom RG, Landells RGM, Wahl GH, Zollinger H (1976) Dediazoniation of arenediazonium ions in homogeneous solution. 7. On the intermediacy of the phenyl cation. J Am Chem Soc 98:3301–3305

    Article  CAS  Google Scholar 

  6. Ambroz HB, Kemp TJ (1979) Aryl cations—new light on old intermediates. Chem Soc Rev 8:353–365. doi:10.1039/CS9790800353

    Article  CAS  Google Scholar 

  7. Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99:95–99. doi:10.1007/s002140050309

    Article  CAS  Google Scholar 

  8. Hrusak J, Schröder D, Iwata S (1997) The ground state (1A1) and the lowest triplet state (3B1) of the phenyl cation C6H5 + revisted. J Chem Phys 106:7541–7549. doi:10.1063/1.473757

    Article  CAS  Google Scholar 

  9. Rayne S, Forest K (2012) Singlet–triplet excitation energies of naphthyl cations: high level composite method calculations suggest a singlet ground state. Comput Theor Chem 983:69–75. doi:10.1016/j.comptc.2012.01.005

    Article  CAS  Google Scholar 

  10. Winkler M, Sander W (2000) Isolation of the phenyl cation in a solid argon matrix. Angew Chem Int Ed 39:2014–2016. doi:10.1002/1521-3773(20000602)39:11<2014:AID-ANIE2014>3.0.CO;2-E

    Article  CAS  Google Scholar 

  11. Winkler M, Sander W (2006) Generation and reactivity of the phenyl cation in cryogenic argon matrices: monitoring the reactions with nitrogen and carbon monoxide directly by IR spectroscopy. J Org Chem 71:6357–6367. doi:10.1021/jo0603678

    Article  CAS  Google Scholar 

  12. Ambroz HB, Przybytniak GK, Stradowski CZ, Wolszczak M (1990) Optical spectroscopy of the aryl cation, the intermediate in the decomposition of arenediazonium salts. J Photochem Photobiol Chem 52:369–374

    Article  CAS  Google Scholar 

  13. Patzer A, Chakraborty S, Solcà N, Dopfer O (2010) IR spectrum and structure of the phenyl cation. Angew Chem Int Ed 49:10145–10148. doi:10.1002/anie.201006357

    Article  CAS  Google Scholar 

  14. Scaiano JC, Kim-Thuan N (1983) Diazonium salts in photochemistry III. Attempts to characterize aryl cations. J Photochem 23:269–276

    Article  CAS  Google Scholar 

  15. Aschi M, Harvey JN (1999) Spin isomerisation of para-substituted phenyl cations. J Chem Soc Perkin Trans 2:1059–1062

    Article  Google Scholar 

  16. Dill JD, Schleyer PVR, Pople JA (1977) Molecular orbital theory of the electronic structure of molecules. 31. Substituent stabilization of the phenyl cation. J Am Chem Soc 99:1–8

    Article  CAS  Google Scholar 

  17. Milanesi S, Fagnoni M, Albini A et al (2003) Cationic arylation through photo(sensitised) decomposition of diazonium salts. Chemoselectivity of triplet phenyl cations. Chem Commun 216–217

  18. Protti S, Dichiarante V, Dondi D et al (2012) Singlet/triplet phenyl cations and benzyne from the photodehalogenation of some silylated and stannylated phenyl halides. Chem Sci 3:1330–1337. doi:10.1039/c2sc20060k

    Article  CAS  Google Scholar 

  19. Slegt M, Overkleeft HS, Lodder G (2007) Fingerprints of singlet and triplet phenyl cations. Eur J Org Chem 32:5364–5375. doi:10.1002/ejoc.200700339

    Article  Google Scholar 

  20. Apeloig Y, Arad D (1985) Stabilization of the phenyl cation by hyperconjugation. J Am Chem Soc 107:5285–5286. doi:10.1021/ja00304a049

    Article  CAS  Google Scholar 

  21. Nicolaides A, Smith DM, Jensen F, Radom L (1997) Phenyl radical, cation, and anion. The triplet–singlet gap and higher excited states of the phenyl cation. J Am Chem Soc 119:8083–8088. doi:10.1021/ja970808s

    Article  CAS  Google Scholar 

  22. Gronert S, Keeffe JR, More O’Ferrall RA (2011) Stabilities of carbenes: independent measures for singlets and triplets. J Am Chem Soc 133:3381–3389. doi:10.1021/ja1071493

    Article  CAS  Google Scholar 

  23. Winter AH, Falvey DE (2010) Vinyl cations substituted with beta π-donor have triplet ground states. J Am Chem Soc 132:215–222

    Article  CAS  Google Scholar 

  24. Zhou X, Hrovat DA, Gleiter R, Borden WT (2009) Reinvestigation of the ordering of the low-lying electronic states of cyclobutanetetraone with CASPT2, CCSD(T), G3B3, ccCA, and CBS-QB3 calculations. Mol Phys 107:863–870. doi:10.1080/00268970802672650

    Article  CAS  Google Scholar 

  25. Woodcock HL, Moran D, Brooks BR et al (2007) Carbene stabilization by aryl substituents. Is bigger better? J Am Chem Soc 129:3763–3770. doi:10.1021/ja068899t

    Article  CAS  Google Scholar 

  26. Rayne S, Forest K (2011) A comparison of density functional theory (DFT) methods for estimating the singlet–triplet (S0–T1) excitation energies of benzene and polyacenes. Comput Theor Chem 976:105–112. doi:10.1016/j.comptc.2011.08.010

    Article  CAS  Google Scholar 

  27. Rayne S, Forest K (2011) Singlet–triplet (S0 → T1) excitation energies of the [4 × n] rectangular graphene nanoribbon series (n = 2–6): a comparative theoretical study. Comput Theor Chem 977:163–167. doi:10.1016/j.comptc.2011.09.021

    Article  CAS  Google Scholar 

  28. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127:124105. doi:10.1063/1.2770701

    Article  Google Scholar 

  29. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108. doi:10.1063/1.2436888

    Article  Google Scholar 

  30. Barnes EC, Petersson GA, Montgomery JA et al (2009) Unrestricted coupled cluster and Brueckner doubles variations of W1 theory. J Chem Theory Comput 5:2687–2693. doi:10.1021/ct900260g

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision D01. Gaussian Inc, Wallingford

    Google Scholar 

  32. Peverati R, Truhlar DG (2012) An improved and broadly accurate local approximation to the exchange–correlation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics. Phys Chem Chem Phys 14:13171–13174. doi:10.1039/c2cp42025b

    Article  CAS  Google Scholar 

  33. Peverati R, Truhlar DG (2012) Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys Chem Chem Phys 14:16187–16191. doi:10.1039/C2CP42576A

    Article  CAS  Google Scholar 

  34. Peverati R, Truhlar DG (2012) M11-L: a local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J Phys Chem Lett 3:117–124. doi:10.1021/jz201525m

    Article  CAS  Google Scholar 

  35. Peverati R, Truhlar DG (2011) A global hybrid generalized gradient approximation to the exchange–correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. J Chem Phys 135:191102. doi:10.1063/1.3663871

    Article  Google Scholar 

  36. Austin A, Petersson GA, Frisch MJ et al (2012) A density functional with spherical atom dispersion terms. J Chem Theory Comput 8:4989–5007. doi:10.1021/ct300778e

    Article  CAS  Google Scholar 

  37. Henderson TM, Izmaylov AF, Scuseria GE, Savin A (2008) Assessment of a middle-range hybrid functional. J Chem Theory Comput 4:1254–1262. doi:10.1021/ct800149y

    Article  CAS  Google Scholar 

  38. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. doi:10.1039/b508541a

    Article  CAS  Google Scholar 

  39. Weigend F (2006) Accurate Coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8:1057–1065. doi:10.1039/b515623h

    Article  CAS  Google Scholar 

  40. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  41. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  42. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. doi:10.1021/jp810292n

    Article  CAS  Google Scholar 

  43. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi:10.1021/cr9904009

    Article  CAS  Google Scholar 

  44. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110. doi:10.1063/1.3359469

    Article  Google Scholar 

  45. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. doi:10.1002/jcc.10189

    Article  CAS  Google Scholar 

  46. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. doi:10.1021/jp9716997

    Article  CAS  Google Scholar 

  47. Allouche A-R (2011) Gabedit: a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182

    Article  CAS  Google Scholar 

  48. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. doi:10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  49. Dill JD, Schleyer PR, Binkley JS et al (1976) Molecular orbital theory of the electronic structure of molecules. 30. Structure and energy of the phenyl cation. J Am Chem Soc 98:5428–5431. doi:10.1021/ja00434a002

    Article  CAS  Google Scholar 

  50. Lazzaroni S, Dondi D, Fagnoni M, Albini A (2008) Geometry and energy of substituted phenyl cations. J Org Chem 73:206–211. doi:10.1021/jo7020218

    Article  CAS  Google Scholar 

  51. Laali KK, Rasul G, Prakash GKS, Olah GA (2002) DFT study of substituted and benzannelated aryl cations: substituent dependency of singlet/triplet ratio. J Org Chem 67:2913–2918. doi:10.1021/jo020084p

    Article  CAS  Google Scholar 

  52. Bondarchuk SV, Minaev BF (2011) Density functional study of ortho-substituted phenyl cations in polar medium and in the gas phase. Chem Phys 389:68–74. doi:10.1016/j.chemphys.2011.08.005

    Article  CAS  Google Scholar 

  53. Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195. doi:10.1002/chin.199139332

    Article  CAS  Google Scholar 

  54. Cox A, Kemp TJ, Payne DR et al (1978) Electron spin resonance characterization of ground state triplet aryl cations substituted at the 4 position by dialkylamino groups. J Am Chem Soc 100:4779–4783

    Article  CAS  Google Scholar 

  55. Ambroz HB, Kemp TJ, Przybytniak GK (1997) Unusual features in the triplet state EPR spectrum of 3,5-dichloro-4-aminophenyl cation. J Photochem Photobiol Chem 108:149–153

    Article  CAS  Google Scholar 

  56. Ambroz HB, Kemp TJ (1979) Triplet state E.S.R. studies of aryl cations. Part 2. Substituent factors influencing net stabilisation of the triplet level. J Chem Soc Perkin Trans 2:1420–1424

    Article  Google Scholar 

  57. Ambroz HB, Kemp TJ, Przybytniak GK (1992) Optical spectroscopy of the aryl cation. 3. Substituent effects on the production and electronic spectra of intermediates in the photodecomposition of ArN2 +; optical characterization of the reaction Ar+ + N2 –> ArN2 +. J Photochem Photobiol Chem 68:85–95

    Article  CAS  Google Scholar 

  58. Momeni MR, Shakib FA (2011) Theoretical description of triplet silylenes evolved from H2Si═Si. Organometallics 30:5027–5032. doi:10.1021/om200586d

    Article  CAS  Google Scholar 

  59. Bondarchuk SV, Minaev BF (2010) About possibility of the triplet mechanism of the Meerwein reaction. J Mol Struct Theochem 952:1–7. doi:10.1016/j.theochem.2010.04.025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by the facilities of the Western Canada Research Grid (WestGrid: project 100185), the Shared Hierarchical Academic Research Computing Network (SHARCNET: project sn4612), and Compute/Calcul Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sierra Rayne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayne, S., Forest, K. Singlet–triplet excitation energies of substituted phenyl cations: a G4(MP2) and G4 theoretical study. Theor Chem Acc 135, 69 (2016). https://doi.org/10.1007/s00214-016-1837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1837-5

Keywords

Navigation