Abstract
Accumulation of Cu2+ redox active metal cations has been associated with the oxidation damage observed in the development of Alzheimer disease. Copper ions can interact with accumulated amyloid-β (Aβ) peptides and mediate the toxicity of the peptide through the catalytic production of H2O2. The first step of this catalytic process is the reduction of Cu2+Aβ complex and the activation of O2 by the reduced species. This work addresses the stability of the reduced complexes and superoxide formation by Cu+Aβ (1–16) complexes. We have considered the experimentally proposed coordination spheres for Cu2+Aβ (1–16) which includes the terminal amino group, two His and the CO from Asp1 (complex I), three histidines and the CO of Ala2 (complex IIa), and one His, the NH2 terminus, the deprotonated amide nitrogen and carbonyl oxygen of Ala2 (complex IIc). Results from ab initio molecular dynamics calculations show that, after reduction of the square planar Cu2+Aβ complex, decoordination of the O atom occurs in the first steps and tricoordinated structures are stable during the simulation time scale, thereby being prone to O2 activation. Quantum chemical calculations on small models and Cu+Aβ (1–16) interacting with O2 indicate that the preference for O2 activation follow the order IIc > IIa > I. In all these cases energy barriers for superoxide formation are less than 4 kcal mol−1 and thus kinetically favorable. Comparison of small model systems and Cu+Aβ (1–16) have pointed out that peptide configuration may significantly influence the O2 activation through second sphere interactions.
This is a preview of subscription content, access via your institution.








References
Selkoe D (2001) Physiol Rev 81:741–766
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Proc Natl Acad Sci 82:4245–4249
Glenner GG, Wong CW (1984) Biochem Biophys Res Commun 120:885–890
Lovell M, Robertson J, Teesdale W, Campbell J, Markesbery W (1998) J Neurol Sci 158:47–52
James SA, Volitakis I, Adlard PA, Duce JA, Masters CL, Cherny RA, Bush AI (2012) Free Radic Biol Med 52:298–302
Markesbery WR (1997) Free Radic Biol Med 23:134–147
Bush AI (2003) Trends Neurosci 26:207–214
Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JDA, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116
Hureau C, Faller P (2009) Biochimie 91:1212–1217
Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI (2002) J Biol Chem 277:40302–40308
Guilloreau L, Combalbert S, Sournia-Saquet M, Mazarguil H, Faller P (2007) ChemBioChem 8:1317–1325
Parthasarathy S, Yoo B, McElheny D, Tay W, Ishii Y (2014) J Biol Chem 289:9998–10010
Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F (2007) Biochemistry 46:9270–9282
Barnham KJ, Masters CL, Bush AI (2004) Nat Rev Drug Discov 3:205–214
Hewitt N, Rauk A (2009) J Phys Chem B 113:1202–1209
Reybier K, Ayala S, Alies B, Rodrigues JV, Bustos Rodriguez S, La Penna G, Collin F, Gomes CM, Hureau C, Faller P (2016) Angew Chem Int Ed 55:1085–1089
Alí-Torres J, Mirats A, Maréchal J-D, Rodríguez-Santiago L, Sodupe M (2014) J Phys Chem B 118:4840–4850
Peck KL, Clewett HS, Schmitt JC, Shearer J (2013) Chem Commun 49:4797–4799
Drew SC, Barnham KJ (2011) Acc Chem Res 44:1146–1155
Hureau C (2012) Coord Chem Rev 256:2164–2174
Alí-Torres J, Maréchal J-D, Rodríguez-Santiago L, Sodupe M (2011) J Am Chem Soc 133:15008–15014
Alí-Torres J, Mirats A, Maréchal J-D, Rodríguez-Santiago L, Sodupe M (2015) AIP Adv 5:092402
Balland V, Hureau C, Savéant J-M (2010) Proc Natl Acad Sci USA 107:17113–17118
Constantino E, Rimola A, Rodríguez-Santiago L, Sodupe M (2005) New J Chem 29:1585
Rimola A, Constantino E, Rodríguez-Santiago L, Sodupe M (2008) J Phys Chem A 112:3444–3453
Himes RA, Park GY, Barry AN, Blackburn NJ, Karlin KD (2007) J Am Chem Soc 129:5352–5353
Mirats A, Alí-Torres J, Rodríguez-Santiago L, Sodupe M, La Penna G (2015) Phys Chem Chem Phys 17:27270–27274
Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241
Steinmann SN, Piemontesi C, Delachat A, Corminboeuf C (2012) J Chem Theory Comput 8:1629–1640
Georgieva I, Trendafilova N, Rodríguez-Santiago L, Sodupe M (2005) J Phys Chem A 109:5668–5676
Rios-Font R, Sodupe M, Rodríguez-Santiago L, Taylor PR (2010) J Phys Chem A 114:10857–10863
Hay PJ, Wadt WR (1985) J Chem Phys 82:299
Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029–1031
Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114
Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revis. D.1. Gaussian Inc, Wallingford
Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926
VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Comput Phys Commun 167:103–128
Perdew JP, Burke K, Ernzerhof M, of Physics D, and Quantum Theory Group Tulane University NOL 70118 (1996) J Phys Rev Lett 77:3865–3868
Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104
Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101
Lippert G, Hutter J, Parrinello M (1997) Mol Phys 92:477–488
VandeVondele J, Hutter J (2007) J Chem Phys 127:114105
Blöchl PE (1995) J Chem Phys 103:7422
Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703–1710
Krack M (2005) Theor Chem Acc 114:145–152
Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58:3641–3662
VandeVondele J, Hutter J (2003) J Chem Phys 118:4365–4369
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926
Laino T, Mohamed F, Laio A, Parrinello M (2005) J Chem Theory Comput 1:1176–1184
Laino T, Mohamed F, Laio A, Parrinello M (2006) J Chem Theory Comput 2:1370–1378
National Institute of Standards and Technology. http://cccbdb.nist.gov/exp2.asp?casno=7782447. Accessed 27 Oct 2015
Rauk A (2009) Chem Soc Rev 38:2698–2715
Acknowledgments
The authors gratefully acknowledge financial support from MINECO and the Generalitat de Catalunya, through CTQ2014-59544-P and 2014SGR-482 projects, respectively, and the use of computer time at the CESCA supercomputing center and the BSC supercomputing center (QCM-2014-1-0019 project). MS also acknowledges support through 2011 ICREA Academia award.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mirats, A., Alí-Torres, J., Rodríguez-Santiago, L. et al. Stability of transient Cu+Aβ (1–16) species and influence of coordination and peptide configuration on superoxide formation. Theor Chem Acc 135, 75 (2016). https://doi.org/10.1007/s00214-016-1836-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-016-1836-6
Keywords
- Oxygen activation
- Cu+-Amiloid beta complexes
- DFT