Skip to main content
Log in

Longitudinal and transverse hyperpolarizabilities of carbon nanotubes: a computational investigation through the coupled-perturbed Hartree–Fock/Kohn–Sham scheme

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Static electronic polarizability \(\alpha\) and second hyperpolarizability \(\gamma\) of semiconducting and conducting carbon nanotubes with radius up to 7.5 Å are evaluated using the coupled-perturbed Hartree–Fock/Kohn–Sham scheme, as implemented in the periodic CRYSTAL14 code, and a split-valence basis set. Two density functionals, namely LDA (pure local) and B3LYP (hybrid), and the Hartree–Fock Hamiltonian are compared. A few PBE (gradient corrected) density functional data are also produced for comparison with previous calculations. Convergence of both longitudinal (L) and transverse (T) components is documented. It is shown how the second hyperpolarizability depends critically on the computational conditions, the more so the larger the radius of the nanotube (and thus the smaller the energy gap). The longitudinal component is sensibly affected by the truncation of the exact exchange series (HF and B3LYP), which must include electron–electron interactions at a distance up to 100 Å in order to have \(\gamma _L\) converged to better than 1 %. The transverse \(\gamma _T\) component of conducting tubes critically depends on the number of k points in reciprocal space: at least 900 k points are required to converge better than 1 % at the LDA level. Coupled-perturbed results are compared to uncoupled values obtained from a sum-over-states (SOS) approach. The difference between the two is particularly important along the transverse direction and when pure DFT functionals are used: the coupled-perturbed correction can shrink the SOS value by several hundreds times. The ratio LDA/HF is roughly constant around 2 for \(\alpha _L\); it ranges between 25 and 60 for \(\gamma _L\). As regards the convergence with the nanotube radius, the \(R^2\) law is confirmed for \(\alpha _L\) and \(\alpha _T\) (normalized for the cell parameter) at all levels of theory. For the second hyperpolarizabilities \(\gamma _L\) and \(\gamma _T\), a clear \(R^5\) dependence is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Benedict LX, Louie SG, Cohen ML (1995) Phys Rev B 52:8541

    Article  CAS  Google Scholar 

  2. Li Y, Rotkin SV, Ravaioli U (2003) Nano Lett 3(2):183

    Article  CAS  Google Scholar 

  3. Guo GY, Chu KC, Wang D-S, Duan C-G (2004) Phys Rev B 69:205416

    Article  Google Scholar 

  4. Guo GY, Chu KC, Wang D-S, Duan C-G (2004) Comput Mater Sci 30:269

    Article  CAS  Google Scholar 

  5. Kozinsky B, Marzari N (2006) Phys Rev Lett 96:166801

    Article  Google Scholar 

  6. Brothers EN, Izmaylov AF, Scuseria GE, Kudin KN (2008) J Phys Chem C 112(5):1396

    Article  CAS  Google Scholar 

  7. Demichelis R, Noël Y, D’Arco P, Rèrat M, Zicovich-Wilson CM, Dovesi R (2011) J Phys Chem C 115(18):8876

    Article  CAS  Google Scholar 

  8. Wang J, Chen Y, Blau WJ (2009) J Mater Chem 19:7425

    Article  CAS  Google Scholar 

  9. Stanciu C, Ehlich R, Petrov V, Steinkellner O, Herrmann J, Hertel IV, Slepyan GY, Khrutchinski AA, Maksimenko SA, Rotermund F, Campbell EEB, Rohmund F (2002) Appl Phys Lett 81(21):4064

    Article  CAS  Google Scholar 

  10. Nemilentsau AM, Slepyan GY, Khrutchinskii AA, Maksimenko SA (2006) Carbon 44(11):2246

    Article  CAS  Google Scholar 

  11. Zhu Y, Elim HI, Foo Y-L, Yu T, Liu Y, Ji W, Lee J-Y, Shen Z, Wee AT-S, Thong JT-L (2006) Adv Mater 18(5):587

    Article  CAS  Google Scholar 

  12. Cho WB, Yim JH, Choi SY, Lee S, Schmidt A, Steinmeyer G, Griebner U, Petrov V, Yeom D-I, Kim K, Rotermund F (2010) Adv Funct Mater 20(12):1937

    Article  CAS  Google Scholar 

  13. Villanueva GE, Jakubinek MB, Simard B, Oton CJ, Matres J, Shao L-Y, Pérez-Millán P, Albert J (2011) Opt Lett 36(11):2104

    Article  CAS  Google Scholar 

  14. Damnjanovic M, Milosevic I, Vukovic T, Sredanovic R (1999) J Phys A Math Gen 32(22):4097

    Article  CAS  Google Scholar 

  15. Kleinman DA (1962) Phys Rev 126:1977

    Article  CAS  Google Scholar 

  16. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  17. Margulis VA, Sizikova TA (1998) Phys B 245(2):173

    Article  CAS  Google Scholar 

  18. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  19. Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Doll K, Harrison NM, Civalleri B, Bush IJ, D’Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 user’s manual. Università di Torino, Torino

    Google Scholar 

  20. Ferrero M, Rérat M, Orlando R, Dovesi R (2008) J Comput Chem 29:1450

    Article  CAS  Google Scholar 

  21. Ferrero M, Rérat M, Orlando R, Dovesi R (2008) J Chem Phys 128:014110

    Article  Google Scholar 

  22. Ferrero M, Rérat M, Kirtman B, Dovesi R (2008) J Chem Phys 129:244110

    Article  Google Scholar 

  23. Ferrero M, Rérat M, Orlando R, Dovesi R, Bush I (2008) J Phys Conf Ser 117:12016

    Article  Google Scholar 

  24. Orlando R, Lacivita V, Bast R, Ruud K (2010) J Chem Phys 132:244106

    Article  Google Scholar 

  25. Champagne B, Perpéte EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489

    Article  CAS  Google Scholar 

  26. Champagne B, Perpéte EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1999) J Chem Phys 110:11664

    Article  CAS  Google Scholar 

  27. Lacivita V, Rérat M, Orlando R, Ferrero M, Dovesi R (2012) J Chem Phys 136:114101

    Article  Google Scholar 

  28. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Causà M, Dovesi R, Orlando R, Pisani C, Saunders VR (1988) J Phys Chem 92:909

    Article  Google Scholar 

  31. Yorikawa H, Muramatsu S (1995) Phys Rev B 52:2723

    Article  CAS  Google Scholar 

  32. Orr BJ, Ward JF (1971) Mol Phys 20:513

    Article  CAS  Google Scholar 

  33. Brothers EN, Kudin KN, Scuseria GE, Bauschlicher CW (2005) Phys Rev B 72:033402

    Article  Google Scholar 

  34. Kuzyk MG (2005) Phys Rev A 72:053819

    Article  Google Scholar 

  35. Liu X, Si J, Chang B, Xu G, Yang Q, Pan Z, Xie S, Ye P, Fan J, Wan M (1999) Appl Phys Lett 74(2):164

    Article  CAS  Google Scholar 

  36. Cox JD, García de Abajo JF (2014) Nat Commun 5:5725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work, partially undertaken within the framework of CALSIMLAB, is supported by the public Grant ANR-11-LABX-0037-01 overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-11-IDEX-0004-02). It was granted access to the HPC resources of the Institute for scientific Computing and Simulation financed by Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Lacivita.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacivita, V., Rérat, M., Orlando, R. et al. Longitudinal and transverse hyperpolarizabilities of carbon nanotubes: a computational investigation through the coupled-perturbed Hartree–Fock/Kohn–Sham scheme. Theor Chem Acc 135, 81 (2016). https://doi.org/10.1007/s00214-016-1835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1835-7

Keywords

Navigation