Abstract
Static electronic polarizability \(\alpha\) and second hyperpolarizability \(\gamma\) of semiconducting and conducting carbon nanotubes with radius up to 7.5 Å are evaluated using the coupled-perturbed Hartree–Fock/Kohn–Sham scheme, as implemented in the periodic CRYSTAL14 code, and a split-valence basis set. Two density functionals, namely LDA (pure local) and B3LYP (hybrid), and the Hartree–Fock Hamiltonian are compared. A few PBE (gradient corrected) density functional data are also produced for comparison with previous calculations. Convergence of both longitudinal (L) and transverse (T) components is documented. It is shown how the second hyperpolarizability depends critically on the computational conditions, the more so the larger the radius of the nanotube (and thus the smaller the energy gap). The longitudinal component is sensibly affected by the truncation of the exact exchange series (HF and B3LYP), which must include electron–electron interactions at a distance up to 100 Å in order to have \(\gamma _L\) converged to better than 1 %. The transverse \(\gamma _T\) component of conducting tubes critically depends on the number of k points in reciprocal space: at least 900 k points are required to converge better than 1 % at the LDA level. Coupled-perturbed results are compared to uncoupled values obtained from a sum-over-states (SOS) approach. The difference between the two is particularly important along the transverse direction and when pure DFT functionals are used: the coupled-perturbed correction can shrink the SOS value by several hundreds times. The ratio LDA/HF is roughly constant around 2 for \(\alpha _L\); it ranges between 25 and 60 for \(\gamma _L\). As regards the convergence with the nanotube radius, the \(R^2\) law is confirmed for \(\alpha _L\) and \(\alpha _T\) (normalized for the cell parameter) at all levels of theory. For the second hyperpolarizabilities \(\gamma _L\) and \(\gamma _T\), a clear \(R^5\) dependence is observed.
Similar content being viewed by others
References
Benedict LX, Louie SG, Cohen ML (1995) Phys Rev B 52:8541
Li Y, Rotkin SV, Ravaioli U (2003) Nano Lett 3(2):183
Guo GY, Chu KC, Wang D-S, Duan C-G (2004) Phys Rev B 69:205416
Guo GY, Chu KC, Wang D-S, Duan C-G (2004) Comput Mater Sci 30:269
Kozinsky B, Marzari N (2006) Phys Rev Lett 96:166801
Brothers EN, Izmaylov AF, Scuseria GE, Kudin KN (2008) J Phys Chem C 112(5):1396
Demichelis R, Noël Y, D’Arco P, Rèrat M, Zicovich-Wilson CM, Dovesi R (2011) J Phys Chem C 115(18):8876
Wang J, Chen Y, Blau WJ (2009) J Mater Chem 19:7425
Stanciu C, Ehlich R, Petrov V, Steinkellner O, Herrmann J, Hertel IV, Slepyan GY, Khrutchinski AA, Maksimenko SA, Rotermund F, Campbell EEB, Rohmund F (2002) Appl Phys Lett 81(21):4064
Nemilentsau AM, Slepyan GY, Khrutchinskii AA, Maksimenko SA (2006) Carbon 44(11):2246
Zhu Y, Elim HI, Foo Y-L, Yu T, Liu Y, Ji W, Lee J-Y, Shen Z, Wee AT-S, Thong JT-L (2006) Adv Mater 18(5):587
Cho WB, Yim JH, Choi SY, Lee S, Schmidt A, Steinmeyer G, Griebner U, Petrov V, Yeom D-I, Kim K, Rotermund F (2010) Adv Funct Mater 20(12):1937
Villanueva GE, Jakubinek MB, Simard B, Oton CJ, Matres J, Shao L-Y, Pérez-Millán P, Albert J (2011) Opt Lett 36(11):2104
Damnjanovic M, Milosevic I, Vukovic T, Sredanovic R (1999) J Phys A Math Gen 32(22):4097
Kleinman DA (1962) Phys Rev 126:1977
Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200
Margulis VA, Sizikova TA (1998) Phys B 245(2):173
Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865
Dovesi R, Saunders VR, Roetti C, Orlando R, Zicovich-Wilson CM, Pascale F, Doll K, Harrison NM, Civalleri B, Bush IJ, D’Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 user’s manual. Università di Torino, Torino
Ferrero M, Rérat M, Orlando R, Dovesi R (2008) J Comput Chem 29:1450
Ferrero M, Rérat M, Orlando R, Dovesi R (2008) J Chem Phys 128:014110
Ferrero M, Rérat M, Kirtman B, Dovesi R (2008) J Chem Phys 129:244110
Ferrero M, Rérat M, Orlando R, Dovesi R, Bush I (2008) J Phys Conf Ser 117:12016
Orlando R, Lacivita V, Bast R, Ruud K (2010) J Chem Phys 132:244106
Champagne B, Perpéte EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489
Champagne B, Perpéte EA, van Gisbergen SJA, Baerends EJ, Snijders JG, Soubra-Ghaoui C, Robins KA, Kirtman B (1999) J Chem Phys 110:11664
Lacivita V, Rérat M, Orlando R, Ferrero M, Dovesi R (2012) J Chem Phys 136:114101
Perdew JP, Zunger A (1981) Phys Rev B 23:5048
Becke AD (1993) J Chem Phys 98:5648
Causà M, Dovesi R, Orlando R, Pisani C, Saunders VR (1988) J Phys Chem 92:909
Yorikawa H, Muramatsu S (1995) Phys Rev B 52:2723
Orr BJ, Ward JF (1971) Mol Phys 20:513
Brothers EN, Kudin KN, Scuseria GE, Bauschlicher CW (2005) Phys Rev B 72:033402
Kuzyk MG (2005) Phys Rev A 72:053819
Liu X, Si J, Chang B, Xu G, Yang Q, Pan Z, Xie S, Ye P, Fan J, Wan M (1999) Appl Phys Lett 74(2):164
Cox JD, García de Abajo JF (2014) Nat Commun 5:5725
Acknowledgments
This work, partially undertaken within the framework of CALSIMLAB, is supported by the public Grant ANR-11-LABX-0037-01 overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-11-IDEX-0004-02). It was granted access to the HPC resources of the Institute for scientific Computing and Simulation financed by Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).
Author information
Authors and Affiliations
Corresponding author
Additional information
Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.
Rights and permissions
About this article
Cite this article
Lacivita, V., Rérat, M., Orlando, R. et al. Longitudinal and transverse hyperpolarizabilities of carbon nanotubes: a computational investigation through the coupled-perturbed Hartree–Fock/Kohn–Sham scheme. Theor Chem Acc 135, 81 (2016). https://doi.org/10.1007/s00214-016-1835-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00214-016-1835-7