Advertisement

Hydrazine decomposition on a small platinum cluster: the role of N2H5 intermediate

  • Marina PelegriniEmail author
  • Renato L. T. Parreira
  • Luiz F. A. FerrãoEmail author
  • Giovanni F. Caramori
  • Alexandre O. Ortolan
  • Eder H. da Silva
  • Orlando Roberto-Neto
  • Jose A. F. F. Rocco
  • Francisco B. C. MachadoEmail author
Regular Article

Abstract

This work presents a comprehensive DFT study on the interaction between hydrazine derivatives with a platinum catalyst surface, which is represented by a tetrahedral Pt4 cluster model. Three separate reaction pathways were investigated; two of which are related to possible pathways of NH3 formation. The first pathway describes the intramolecular transfer of one hydrogen atom in the hydrazine molecule forming the NHNH3 intermediate, then dissociating into NH and NH3. The second describes the addition of one external hydrogen atom to hydrazine forming N2H5, followed by its dissociation to NH2 and NH3. The third reaction pathway involves the formation of N2H3 by means of hydrogen abstraction by an external hydrogen. The reactions were studied in both the absence and the presence of a Pt4 cluster. We find that the assistance of the Pt4 cluster lacks a systematic effect on the reactions barrier heights. It is also shown that the ammonia formation can possibly proceed through the formation of the N2H5 intermediate, leading to more exothermic intermediate steps in the presence of the Pt4 cluster.

Keywords

DFT M06 N2H4 Pt4 Thermochemistry Adsorption 

Notes

Acknowledgments

The authors acknowledge the continuous research and fellowship support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grants 302,408/2014-2, 303259/2012-4, and 304914/2013-4, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grants 2012/50666-2, 2011/07623-8, and 2014/24155-6. We also wish to thank Dr. Corey A. Petty for his kind attention in revising this manuscript.

Supplementary material

214_2016_1816_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2493 kb)

References

  1. 1.
    Xia F, Cao Z (2006) J Phys Chem A 110:10078–10083CrossRefGoogle Scholar
  2. 2.
    Zhang W, Xiao L, Hirata Y, Pawluk T, Wang L (2004) Chem Phys Lett 383:67–71CrossRefGoogle Scholar
  3. 3.
    Ishikawa Y, Diaz-Morales RR, Perez A, Vilkas MJ, Cabrera CR (2005) Chem Phys Lett 411:404–410CrossRefGoogle Scholar
  4. 4.
    Perez A, Vilkas MJ, Cabrera CR, Ishikawa Y (2005) J Phys Chem B 109:23571–23578CrossRefGoogle Scholar
  5. 5.
    Goldberg A, Yarovsky I (2007) Phys Rev B 75:195403CrossRefGoogle Scholar
  6. 6.
    Bacalis NC, Metropoulos A, Gross A (2010) J Phys Chem A 114:11746–11750CrossRefGoogle Scholar
  7. 7.
    Mosch C, Koukounas C, Bacalis N, Metropoulos A, Gross A, Mavridis A (2008) J Phys Chem C 112:6924–6932CrossRefGoogle Scholar
  8. 8.
    Kulkarni BS, Krishnamurty S, Pal S (2011) J Phys Chem C 115:14615–14623CrossRefGoogle Scholar
  9. 9.
    Rubio J, Zurita S, Barthelat JC, Illas F (1994) Chem Phys Lett 217:283–287CrossRefGoogle Scholar
  10. 10.
    Xiao L, Wang L (2004) J Phys Chem A 108:8605–8614CrossRefGoogle Scholar
  11. 11.
    Vidal-Iglesias FJ, Solla-Gullón J, Montiel V, Feliu JM, Aldaz A (2007) J Power Sources 171:448–456CrossRefGoogle Scholar
  12. 12.
    Jacob T (2006) Fuel Cells 6:159–181CrossRefGoogle Scholar
  13. 13.
    Desai SK, Neurock M, Kourtakis K (2002) J Phys Chem B 106:2559–2568CrossRefGoogle Scholar
  14. 14.
    Franaszczuk K, Herrero E, Zelenay P, Wieckowski A, Wang J, Masel RI (1992) J Phys Chem 96:8509–8516CrossRefGoogle Scholar
  15. 15.
    Ehlers DH, Spitzer A, Luth H (1985) Surf Sci 160:57–69CrossRefGoogle Scholar
  16. 16.
    Brogan MS, Cairns JA, Dines TJ, Rochester CH (1997) Spectrochim Acta A 53:943–950CrossRefGoogle Scholar
  17. 17.
    Boggs BK, Botte GG (2010) Electrochim Acta 55:5287–5293CrossRefGoogle Scholar
  18. 18.
    Moran E, Cattaneo C, Mishima H, López de Mishima BA, Silvetti SP, Rodriguez JL, Pastor E (2008) J Solid State Electrochem 12:583–589CrossRefGoogle Scholar
  19. 19.
    Eberstein IJ, Glassman I (1960) 2:351 (cited on Ref. [20] below)Google Scholar
  20. 20.
    Makled AE, Belal H (2009) 13th international conference on aerospace sciences & aviation technology, ASAT-13, Military Technical College, Kobry Elkobbah, Cairo, Egypt. http://www.mtc.edu.eg/ASAT13/pdf/PP22.pdf. Accessed 19 Jan 2016
  21. 21.
    Schmidt EW (2001) Hydrazine and its derivatives: preparation, properties, applications, 2nd edn. Wiley, New YorkGoogle Scholar
  22. 22.
    Konnov AA, De Ruyck J (2001) Combust Flame 124:106–126CrossRefGoogle Scholar
  23. 23.
    Gray P, Lee JC, Spencer M (1963) Combust Flame 7:315–321CrossRefGoogle Scholar
  24. 24.
    Auzanneau M, Roux M (1990) Combust Sci Technol 73:505–520CrossRefGoogle Scholar
  25. 25.
    Sutton GP, Biblarz O (2010) Rocket propulsion elements, 8th edn. Wiley, New YorkGoogle Scholar
  26. 26.
    Ambrose J, Yendler B, Collicott SH (2000) J Spacecr Rockets 37:833–835CrossRefGoogle Scholar
  27. 27.
    Armstrong WE, Ryland LB, Voge HH (1978) Catalyst comprising Ir or Ir and Ru for hydrazine decomposition. United States Patent, US4124538AGoogle Scholar
  28. 28.
    Soares Neto TG, Gobbo-Ferreira J, Cobo AJG, Cruz GM (2003) Braz J Chem Eng 20:273–282CrossRefGoogle Scholar
  29. 29.
    Alberas DJ, Kiss J, Liu ZM, White JM (1992) Surf Sci 278:51–61CrossRefGoogle Scholar
  30. 30.
    Wagner ML, Schmidt LD (1991) Surf Sci Lett 257:A565CrossRefGoogle Scholar
  31. 31.
    Prasad J, Gland JL (1991) Langmuir 7:722–726CrossRefGoogle Scholar
  32. 32.
    Maurel R, Menezo JC (1978) J Catal 51:293–295CrossRefGoogle Scholar
  33. 33.
    Johnson DW, Roberts MW (1980) J Electron Spectrosc Relat Phenom 19:185–195CrossRefGoogle Scholar
  34. 34.
    Grunze M (1979) Surf Sci 81:603–625CrossRefGoogle Scholar
  35. 35.
    Santos JBO, Valença GP, Rodrigues JAJ (2002) J Catal 210:1–6CrossRefGoogle Scholar
  36. 36.
    De Medeiros JE, Valença GP (1998) Braz J Chem Eng 15:126–131CrossRefGoogle Scholar
  37. 37.
    Asatryan R, Bozzelli JW, Da Silva G, Swinnen S, Nguyen MT (2010) J Phys Chem A 114:6235–6249CrossRefGoogle Scholar
  38. 38.
    Carrette L, Friedrich KA, Stimming U (2001) Fuel Cells 1:5–39CrossRefGoogle Scholar
  39. 39.
    Yamada K, Asazawa K, Yasuda K, Ioroi T, Tanaka H, Miyazaki Y, Kobayashi T (2003) Fuel Cell J Power Sources 115:236–242CrossRefGoogle Scholar
  40. 40.
    Yamada K, Yasuda K, Tanaka H, Miyazaki Y, Kobayashi T (2003) J Power Sources 122:132–137CrossRefGoogle Scholar
  41. 41.
    Serov A, Kwak C (2010) Appl Catal B Environ 98:1–9CrossRefGoogle Scholar
  42. 42.
    Esrafili MD, Mokhtar Teymurian V, Nurazar R (2015) Surf Sci 632:118–125CrossRefGoogle Scholar
  43. 43.
    He YB, Jia JF, Wu HS (2015) Appl Surf Sci 327:462–469CrossRefGoogle Scholar
  44. 44.
    Tafreshi SS, Roldan A, de Leeuw NH (2015) Surf Sci 637:140–148CrossRefGoogle Scholar
  45. 45.
    Schmidt MW, Gordon MS (2013) Z Phys Chem 227:1301–1336CrossRefGoogle Scholar
  46. 46.
    Zhang PX, Wang YG, Huang YQ, Zhang T, Wu GS, Li J (2011) Catal Today 165:80–88CrossRefGoogle Scholar
  47. 47.
    Agusta MK, Diño WA, David M, Nakanishi H, Kasai H (2011) Surf Sci 605:1347–1353CrossRefGoogle Scholar
  48. 48.
    Machado FBC, Roberto-Neto O (2002) Chem Phys Lett 352:120–126CrossRefGoogle Scholar
  49. 49.
    Daramola DA, Botte GG (2013) Colloid Interface Sci 402:204–214CrossRefGoogle Scholar
  50. 50.
    Zhang L, Van Duin ACT, Zybin SV, Goddard WA (2009) J Phys Chem B 113:10770–10778CrossRefGoogle Scholar
  51. 51.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  52. 52.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  53. 53.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  54. 54.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  55. 55.
    Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1–13CrossRefGoogle Scholar
  56. 56.
    Zhao Y, Truhlar DG (2007) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  57. 57.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
  58. 58.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
  59. 59.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  60. 60.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  61. 61.
    Herzberg G (1966) Molecular spectra and molecular structure: electronic spectra and electronic structure of polyatomic molecules, vol 3. D. Van Nostrand, New YorkGoogle Scholar
  62. 62.
    Kittel C, McEuen P, McEuen P (1976) Introduction to solid state physics. Wiley, New YorkGoogle Scholar
  63. 63.
    Psofogiannakis G, St-Amant A, Ternan M (2006) J Phys Chem B 110:24593–24605CrossRefGoogle Scholar
  64. 64.
    Fukui K (1981) Acc Chem Res 14:363–368. doi: 10.1021/ar00072a001 CrossRefGoogle Scholar
  65. 65.
    Hratchian HP, Schlegel HB (2004) J Chem Phys 120:9918–9924CrossRefGoogle Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 {R}evision {D}.01Google Scholar
  67. 67.
    Ohwaki T, Kamegai K, Yamashita K (2001) Bull Chem Soc Jpn 74:1021–1029CrossRefGoogle Scholar
  68. 68.
    Parreira RLT, Caramori GF, Galembeck SE, Huguenin F (2008) J Phys Chem A 112:11731–11743CrossRefGoogle Scholar
  69. 69.
    Kua J, Goddard WA (1998) J Phys Chem B 102:9481–9491CrossRefGoogle Scholar
  70. 70.
    Gdowski GE, Fair JA, Madix RJ (1983) Surf Sci Lett 127:A177CrossRefGoogle Scholar
  71. 71.
    Li QS, Zhang X, Zhang SW (2003) J Phys Chem A 107:6055–6061CrossRefGoogle Scholar
  72. 72.
    Vaghjiani GL (1995) Int J Chem Kinet 27:777–790CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marina Pelegrini
    • 1
    Email author
  • Renato L. T. Parreira
    • 2
  • Luiz F. A. Ferrão
    • 3
    Email author
  • Giovanni F. Caramori
    • 4
  • Alexandre O. Ortolan
    • 4
  • Eder H. da Silva
    • 2
  • Orlando Roberto-Neto
    • 5
  • Jose A. F. F. Rocco
    • 3
  • Francisco B. C. Machado
    • 3
    Email author
  1. 1.Divisão de EnsinoAcademia da Força AéreaPirassunungaBrazil
  2. 2.Núcleo de Pesquisa em Ciências Exatas e TecnológicasUniversidade de FrancaFrancaBrazil
  3. 3.Departamento de QuímicaInstituto Tecnológico de AeronáuticaSão José Dos CamposBrazil
  4. 4.Departamento de QuímicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  5. 5.Divisão de Aerotermodinâmica e HipersônicaInstituto de Estudos AvançadosSão José Dos CamposBrazil

Personalised recommendations