Hydrazine decomposition on a small platinum cluster: the role of N2H5 intermediate
- 305 Downloads
- 2 Citations
Abstract
This work presents a comprehensive DFT study on the interaction between hydrazine derivatives with a platinum catalyst surface, which is represented by a tetrahedral Pt4 cluster model. Three separate reaction pathways were investigated; two of which are related to possible pathways of NH3 formation. The first pathway describes the intramolecular transfer of one hydrogen atom in the hydrazine molecule forming the NHNH3 intermediate, then dissociating into NH and NH3. The second describes the addition of one external hydrogen atom to hydrazine forming N2H5, followed by its dissociation to NH2 and NH3. The third reaction pathway involves the formation of N2H3 by means of hydrogen abstraction by an external hydrogen. The reactions were studied in both the absence and the presence of a Pt4 cluster. We find that the assistance of the Pt4 cluster lacks a systematic effect on the reactions barrier heights. It is also shown that the ammonia formation can possibly proceed through the formation of the N2H5 intermediate, leading to more exothermic intermediate steps in the presence of the Pt4 cluster.
Keywords
DFT M06 N2H4 Pt4 Thermochemistry AdsorptionNotes
Acknowledgments
The authors acknowledge the continuous research and fellowship support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grants 302,408/2014-2, 303259/2012-4, and 304914/2013-4, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grants 2012/50666-2, 2011/07623-8, and 2014/24155-6. We also wish to thank Dr. Corey A. Petty for his kind attention in revising this manuscript.
Supplementary material
References
- 1.Xia F, Cao Z (2006) J Phys Chem A 110:10078–10083CrossRefGoogle Scholar
- 2.Zhang W, Xiao L, Hirata Y, Pawluk T, Wang L (2004) Chem Phys Lett 383:67–71CrossRefGoogle Scholar
- 3.Ishikawa Y, Diaz-Morales RR, Perez A, Vilkas MJ, Cabrera CR (2005) Chem Phys Lett 411:404–410CrossRefGoogle Scholar
- 4.Perez A, Vilkas MJ, Cabrera CR, Ishikawa Y (2005) J Phys Chem B 109:23571–23578CrossRefGoogle Scholar
- 5.Goldberg A, Yarovsky I (2007) Phys Rev B 75:195403CrossRefGoogle Scholar
- 6.Bacalis NC, Metropoulos A, Gross A (2010) J Phys Chem A 114:11746–11750CrossRefGoogle Scholar
- 7.Mosch C, Koukounas C, Bacalis N, Metropoulos A, Gross A, Mavridis A (2008) J Phys Chem C 112:6924–6932CrossRefGoogle Scholar
- 8.Kulkarni BS, Krishnamurty S, Pal S (2011) J Phys Chem C 115:14615–14623CrossRefGoogle Scholar
- 9.Rubio J, Zurita S, Barthelat JC, Illas F (1994) Chem Phys Lett 217:283–287CrossRefGoogle Scholar
- 10.Xiao L, Wang L (2004) J Phys Chem A 108:8605–8614CrossRefGoogle Scholar
- 11.Vidal-Iglesias FJ, Solla-Gullón J, Montiel V, Feliu JM, Aldaz A (2007) J Power Sources 171:448–456CrossRefGoogle Scholar
- 12.Jacob T (2006) Fuel Cells 6:159–181CrossRefGoogle Scholar
- 13.Desai SK, Neurock M, Kourtakis K (2002) J Phys Chem B 106:2559–2568CrossRefGoogle Scholar
- 14.Franaszczuk K, Herrero E, Zelenay P, Wieckowski A, Wang J, Masel RI (1992) J Phys Chem 96:8509–8516CrossRefGoogle Scholar
- 15.Ehlers DH, Spitzer A, Luth H (1985) Surf Sci 160:57–69CrossRefGoogle Scholar
- 16.Brogan MS, Cairns JA, Dines TJ, Rochester CH (1997) Spectrochim Acta A 53:943–950CrossRefGoogle Scholar
- 17.Boggs BK, Botte GG (2010) Electrochim Acta 55:5287–5293CrossRefGoogle Scholar
- 18.Moran E, Cattaneo C, Mishima H, López de Mishima BA, Silvetti SP, Rodriguez JL, Pastor E (2008) J Solid State Electrochem 12:583–589CrossRefGoogle Scholar
- 19.Eberstein IJ, Glassman I (1960) 2:351 (cited on Ref. [20] below)Google Scholar
- 20.Makled AE, Belal H (2009) 13th international conference on aerospace sciences & aviation technology, ASAT-13, Military Technical College, Kobry Elkobbah, Cairo, Egypt. http://www.mtc.edu.eg/ASAT13/pdf/PP22.pdf. Accessed 19 Jan 2016
- 21.Schmidt EW (2001) Hydrazine and its derivatives: preparation, properties, applications, 2nd edn. Wiley, New YorkGoogle Scholar
- 22.Konnov AA, De Ruyck J (2001) Combust Flame 124:106–126CrossRefGoogle Scholar
- 23.Gray P, Lee JC, Spencer M (1963) Combust Flame 7:315–321CrossRefGoogle Scholar
- 24.Auzanneau M, Roux M (1990) Combust Sci Technol 73:505–520CrossRefGoogle Scholar
- 25.Sutton GP, Biblarz O (2010) Rocket propulsion elements, 8th edn. Wiley, New YorkGoogle Scholar
- 26.Ambrose J, Yendler B, Collicott SH (2000) J Spacecr Rockets 37:833–835CrossRefGoogle Scholar
- 27.Armstrong WE, Ryland LB, Voge HH (1978) Catalyst comprising Ir or Ir and Ru for hydrazine decomposition. United States Patent, US4124538AGoogle Scholar
- 28.Soares Neto TG, Gobbo-Ferreira J, Cobo AJG, Cruz GM (2003) Braz J Chem Eng 20:273–282CrossRefGoogle Scholar
- 29.Alberas DJ, Kiss J, Liu ZM, White JM (1992) Surf Sci 278:51–61CrossRefGoogle Scholar
- 30.Wagner ML, Schmidt LD (1991) Surf Sci Lett 257:A565CrossRefGoogle Scholar
- 31.Prasad J, Gland JL (1991) Langmuir 7:722–726CrossRefGoogle Scholar
- 32.Maurel R, Menezo JC (1978) J Catal 51:293–295CrossRefGoogle Scholar
- 33.Johnson DW, Roberts MW (1980) J Electron Spectrosc Relat Phenom 19:185–195CrossRefGoogle Scholar
- 34.Grunze M (1979) Surf Sci 81:603–625CrossRefGoogle Scholar
- 35.Santos JBO, Valença GP, Rodrigues JAJ (2002) J Catal 210:1–6CrossRefGoogle Scholar
- 36.De Medeiros JE, Valença GP (1998) Braz J Chem Eng 15:126–131CrossRefGoogle Scholar
- 37.Asatryan R, Bozzelli JW, Da Silva G, Swinnen S, Nguyen MT (2010) J Phys Chem A 114:6235–6249CrossRefGoogle Scholar
- 38.Carrette L, Friedrich KA, Stimming U (2001) Fuel Cells 1:5–39CrossRefGoogle Scholar
- 39.Yamada K, Asazawa K, Yasuda K, Ioroi T, Tanaka H, Miyazaki Y, Kobayashi T (2003) Fuel Cell J Power Sources 115:236–242CrossRefGoogle Scholar
- 40.Yamada K, Yasuda K, Tanaka H, Miyazaki Y, Kobayashi T (2003) J Power Sources 122:132–137CrossRefGoogle Scholar
- 41.Serov A, Kwak C (2010) Appl Catal B Environ 98:1–9CrossRefGoogle Scholar
- 42.Esrafili MD, Mokhtar Teymurian V, Nurazar R (2015) Surf Sci 632:118–125CrossRefGoogle Scholar
- 43.He YB, Jia JF, Wu HS (2015) Appl Surf Sci 327:462–469CrossRefGoogle Scholar
- 44.Tafreshi SS, Roldan A, de Leeuw NH (2015) Surf Sci 637:140–148CrossRefGoogle Scholar
- 45.Schmidt MW, Gordon MS (2013) Z Phys Chem 227:1301–1336CrossRefGoogle Scholar
- 46.Zhang PX, Wang YG, Huang YQ, Zhang T, Wu GS, Li J (2011) Catal Today 165:80–88CrossRefGoogle Scholar
- 47.Agusta MK, Diño WA, David M, Nakanishi H, Kasai H (2011) Surf Sci 605:1347–1353CrossRefGoogle Scholar
- 48.Machado FBC, Roberto-Neto O (2002) Chem Phys Lett 352:120–126CrossRefGoogle Scholar
- 49.Daramola DA, Botte GG (2013) Colloid Interface Sci 402:204–214CrossRefGoogle Scholar
- 50.Zhang L, Van Duin ACT, Zybin SV, Goddard WA (2009) J Phys Chem B 113:10770–10778CrossRefGoogle Scholar
- 51.Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
- 52.Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
- 53.Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
- 54.Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
- 55.Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1–13CrossRefGoogle Scholar
- 56.Zhao Y, Truhlar DG (2007) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
- 57.Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283CrossRefGoogle Scholar
- 58.Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310CrossRefGoogle Scholar
- 59.McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
- 60.Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
- 61.Herzberg G (1966) Molecular spectra and molecular structure: electronic spectra and electronic structure of polyatomic molecules, vol 3. D. Van Nostrand, New YorkGoogle Scholar
- 62.Kittel C, McEuen P, McEuen P (1976) Introduction to solid state physics. Wiley, New YorkGoogle Scholar
- 63.Psofogiannakis G, St-Amant A, Ternan M (2006) J Phys Chem B 110:24593–24605CrossRefGoogle Scholar
- 64.Fukui K (1981) Acc Chem Res 14:363–368. doi: 10.1021/ar00072a001 CrossRefGoogle Scholar
- 65.Hratchian HP, Schlegel HB (2004) J Chem Phys 120:9918–9924CrossRefGoogle Scholar
- 66.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 {R}evision {D}.01Google Scholar
- 67.Ohwaki T, Kamegai K, Yamashita K (2001) Bull Chem Soc Jpn 74:1021–1029CrossRefGoogle Scholar
- 68.Parreira RLT, Caramori GF, Galembeck SE, Huguenin F (2008) J Phys Chem A 112:11731–11743CrossRefGoogle Scholar
- 69.Kua J, Goddard WA (1998) J Phys Chem B 102:9481–9491CrossRefGoogle Scholar
- 70.Gdowski GE, Fair JA, Madix RJ (1983) Surf Sci Lett 127:A177CrossRefGoogle Scholar
- 71.Li QS, Zhang X, Zhang SW (2003) J Phys Chem A 107:6055–6061CrossRefGoogle Scholar
- 72.Vaghjiani GL (1995) Int J Chem Kinet 27:777–790CrossRefGoogle Scholar