Skip to main content
Log in

Difluorodiazirine (CF2N2): a quantum mechanical study of the electron density and of the electrostatic potential in the ground and excited electronic states

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The difluorocarbene radical (:CF2), used in organic synthesis and in photoaffinity labeling, can be generated by the pyrolytic or photolytic decomposition of 3,3-difluorodiazirine (CF2N2, DFD). DFD possesses no dipole moment in the ground electronic state S 0 but has an experimental dipole of 1.5 ± 0.2 debye (D) in its first singlet excited state S 1. These observations have been ascribed to the shift in electron population between orbitals (Frenking et al. in J Comp Chem 28:117–126, 2007). An alternative real-space explanation is presented, which shows that the vanishing dipole moment in S 0 results from a balance between a charge transfer contribution due to the flow of charge between atoms and an atomic polarization term due to the non-sphericity of atoms in molecules. This balance is altered in S 1. This orbital-free description is shown to be consistent with an incipient dissociation of DFD to :CF2 and N2 upon excitation. The Laplacian of the electron density and the molecular electrostatic potential exhibit significant reorganization on excitation, mirroring one another, with consequential changes in chemical reactivity. Conforming to Hund’s rule, the lowest excited state is a triplet state (T 1), and the next level, the one examined in this work, is the first singlet excited state (S 1) with vertical excitation energies of 2.81 and 3.99 eV, respectively. The calculated dipole moment magnitudes (in D) are 0.05 (S 0), 0.973 (T 1), and 0.969 (S 1) all pointing their negative end toward the nitrogens. The maximal average lifetime of S 1 (in absence of non-radiative de-excitation) is ca. 30 ps, sufficient for its slowest vibrational normal mode to complete 400 oscillations. From a comparison of Hartree–Fock, MP2, QCISD, CCSD, and TD-DFT/B3LYP calculations with experiment (all using an aug-cc-pVTZ basis set), for both the ground and excited states of DFD, the method of choice appears to be QCISD, the one used in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitsch RA (1965) J Am Chem Soc 87:758–761

    Article  CAS  Google Scholar 

  2. Mitsch RA (1964) J Heterocycl Chem 1:271–274

    Article  CAS  Google Scholar 

  3. Dubinsky L, Krom BP, Meijler MM (2012) Bioorg Med Chem 20:554–570

    Article  CAS  Google Scholar 

  4. Bjork CW, Craig NC, Mitsch RA, Overend J (1965) J. Am. Chem. Soc. 87; 1186–1191 (captions of Figs. 1 and 2 in this reference should be switched as described in a correction by the authors in a citation of this article as Ref. [1], p. 897, in: Norman CR, Kliewer MA (1979) Spectrochim. Acta 35A; 895–897)

  5. Douglas MM (1966) United States Patent US3257381A

  6. Moss RA, Wang L, Krogh-Jespersen K (2009) J Am Chem Soc 131:2128–2130

    Article  CAS  Google Scholar 

  7. Bogey M, Winnewisser M, Christiansen JJ (1984) Can J Phys 62:1198–1216

    Article  CAS  Google Scholar 

  8. Hencher JL, Bauer SH (1967) J Am Chem Soc 89:5527–5531

    Article  CAS  Google Scholar 

  9. Craig NC, Kliewer MA (1979) Spectrochim Acta A 35A:895–897

    Article  CAS  Google Scholar 

  10. Sieber H, Neusser HJ, Stroh F, Winnewisser M (1991) J Mol Spectr 148:453–461

    Article  CAS  Google Scholar 

  11. Pandey RR, Khait YG, Hoffmann MR (2004) J Phys Chem A 108:3119–3124

    Article  CAS  Google Scholar 

  12. Sieber H, Riedle E, Neusser HJ (1990) Chem Phys Lett 169:191–197

    Article  CAS  Google Scholar 

  13. Lombardi JR, Klemperer W, Robin MB, Basch H, Kuebler NA (1969) J Chem Phys 51:33–44

    Article  CAS  Google Scholar 

  14. Hollas JM, Hepburn PH (1974) J Mol Spect 50:126–141

    Article  Google Scholar 

  15. Hollas JM (1982) High resolution spectroscopy. Butterworths, London

    Google Scholar 

  16. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  17. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  18. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  19. Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, London

    Book  Google Scholar 

  20. Matta CF, Boyd RJ (eds) (2007) The quantum theory of atoms in molecules: from solid state to dna and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  21. Hovick JW, Poler JC (2005) J Chem Educ 82:889

    Article  CAS  Google Scholar 

  22. Coulson CA (1961) Electricity. Oliver and Boyd, London

    Google Scholar 

  23. Turro NJ (1991) Modern molecular photochemistry. University Science Books, Sausalito

    Google Scholar 

  24. Simmons JD, Bartky IR, Bass AM (1965) J Mol Spectrosc 17:48–49

    Article  CAS  Google Scholar 

  25. Bakhsliev NG, Knyazhanskii MI, Minkin VI, Osipov OA, Saidov GV (1969) Russ Chem Rev 38:740–754

    Article  Google Scholar 

  26. Bader RFW, Bayles D, Heard GL (2000) J Chem Phys 112:10095–10105

    Article  CAS  Google Scholar 

  27. Buttingsrud B, Alsberg BK, Åstrand P-O (2007) Phys Chem Chem Phys 9:2226–2233

    Article  CAS  Google Scholar 

  28. Gutiérrez-Arzaluz L, Cortés-Guzmán F, Rocha-Rinza T, Peón J (2015) Phys Chem Chem Phys (PCCP) 17:31608–31612

    Article  Google Scholar 

  29. Jenkins S, Blancafort L, Kirk SR, Bearpark MJ (2014) Phys Chem Chem Phys (PCCP) 16:7115–7126

    Article  CAS  Google Scholar 

  30. Sánchez-Flores EI, Chávez-Calvillo R, Keith TA, Cuevas G, Rocha-Rinza T, Cortés-Guzmán F (2014) J Comput Chem 35:820–828

    Article  Google Scholar 

  31. Jara-Cortés J, Rocha-Rinza T, Hernández-Trujillo J (2015) Comput Theor Chem 1053:220–228

    Article  Google Scholar 

  32. Syrkin YK, Dyatkina ME (1964) Structure of molecules and the chemical bond (english translation). Dover Publications Inc, New York

    Google Scholar 

  33. Davies M (1965) Some electrical and optical aspects of molecular behaviour. Pergamon Press, Oxford

    Google Scholar 

  34. Laidig KE, Bader RFW (1990) J Chem Phys 93:7213–7224

    Article  CAS  Google Scholar 

  35. Bader RFW, Keith TA (1993) J Chem Phys 99:3683–3693

    Article  CAS  Google Scholar 

  36. Bader RFW (2002) Mol Phys 100:3333–3344

    Article  CAS  Google Scholar 

  37. Bader RFW, Matta CF (2001) Int J Quantum Chem 85:592–607

    Article  CAS  Google Scholar 

  38. Matta CF, Sowlati-Hashjin S, Bandrauk AD (2013) J Phys Chem A 117:7468–7483

    Article  CAS  Google Scholar 

  39. Keith TA (2007) Chapter 3. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  40. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  41. Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications Inc, New York

    Google Scholar 

  42. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  43. Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382–7387

    Article  CAS  Google Scholar 

  44. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  45. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics: mbpt and coupled-cluster theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  47. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, New York

    Book  Google Scholar 

  48. Becke A (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  50. Jablonski M, Palusiak M (2010) J Phys Chem A 114:12498–12505

    Article  CAS  Google Scholar 

  51. Rykounov AA, Tsirelson VG (2009) J Mol Struct (Theochem) 906:11–24

    Article  CAS  Google Scholar 

  52. Matta CF (2010) J Comput Chem 31:1297–1311

    CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian Inc.: Wallingford CT

  54. Keith TA (2015) AIMAll/AIMStudio (http://aim.tkgristmill.com/)

  55. Frenking G, Loschen C, Krapp A, Fau S, Strauss SH (2007) J Comp Chem 28:117–126

    Article  CAS  Google Scholar 

  56. Kim H, Doan VD, Cho WJ, Valero R, Tehrani ZA, Madridejos JML, Kim KS (2015) Sci Rep 5:16307

    Article  CAS  Google Scholar 

  57. Matta CF, Gillespie RJ (2002) J Chem Educ 79:1141–1152

    Article  CAS  Google Scholar 

  58. Bader RFW, Zou PF (1992) Chem Phys Lett 191:54–58

    Article  CAS  Google Scholar 

  59. Bader RFW, Matta CF (2004) J Phys Chem A 108:8385–8394

    Article  CAS  Google Scholar 

  60. Tsirelson VG, Ozerov RP (1996) Electron density and bonding in crystals: principles, theory and x-ray diffraction experiments in solid state physics and chemistry. Institute of Physics Publishing, New York

    Google Scholar 

  61. Koritsanszky TS, Coppens P (2001) Chem Rev 101:1583–1628

    Article  CAS  Google Scholar 

  62. Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press Inc, New York

    Google Scholar 

  63. Sturm JE (1990) J Chem Educ 67:32–33

    Article  CAS  Google Scholar 

  64. Bader RFW (2000) Coord Chem Rev 197:71–94

    Article  CAS  Google Scholar 

  65. Bader RWF, Heard GL (1999) J Chem Phys 111:8789–8797

    Article  CAS  Google Scholar 

  66. National Institute of Standards and Technology (NIST) (2015) Computational Chemistry Comparison and Benchmark DataBase: Precomputed vibrational scaling factors (http://cccbdb.nist.gov/vibscale.asp)

  67. Avendaño M, Cordova T, Mora JR, Chuchani G (2016) Comput Theor Chem 1078:23–29

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the two anonymous reviewers especially Reviewer #1 who suggested the examination of the Laplacian scalar field and its change upon excitation. The authors also thank Professor Lou Massa (Hunter College, City University of New York), Professor Paul W. Ayers (McMaster University), and Drs. Jim Hess and Douglas J. Fox of Gaussian, Inc., for helpful comments. L.A.T. thanks CAPES for a doctoral fellowship and CNPq (Science without Borders Scholarship Program—205445/2014-4) and for a Visiting Graduate Studentship at Mount Saint Vincent University. R. L. A. H thanks FAPESP for financial support (Grants 2014/23714-1 and 2010/18743-1, São Paulo Research Foundation). C. F. M. acknowledges the funding of the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), and Mount Saint Vincent University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chérif F. Matta.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terrabuio, L.A., Haiduke, R.L.A. & Matta, C.F. Difluorodiazirine (CF2N2): a quantum mechanical study of the electron density and of the electrostatic potential in the ground and excited electronic states. Theor Chem Acc 135, 63 (2016). https://doi.org/10.1007/s00214-015-1803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1803-7

Keywords

Navigation