Advertisement

A research on excited-state intramolecular proton-transfer mechanism of a new chemosensor

  • Dapeng YangEmail author
  • Peiying Li
  • Rui Zheng
  • Yusheng Wang
  • Jian Lv
Regular Article

Abstract

Based on the density functional theory (DFT) and time-dependent density functional theory (TDDFT), the excited-state intramolecular proton-transfer (ESIPT) mechanism of a new reported chromophore by Kim et al. (Sensors Actuators B Chem 206:430–434, 2015) has been investigated theoretically. The calculated results of bond lengths and bond angles of hydrogen bond O–H···N, the infrared vibrational spectra and the hydrogen bonding energies all demonstrated that the intramolecular hydrogen bond is strengthened in the first excited state. It is no denying the fact that our calculated results reproduced the experimental absorbance and fluorescence emission spectra well, which demonstrates that the TDDFT theory we adopted is reasonable and effective. From the analysis of frontier molecular orbitals, it is reasonable to suggest that the intramolecular charge-transfer nature of the excitation prompts the proton transfer giving rise to an ESPT reaction. The constructed potential energy curves of ground state and the first excited state based on keeping the O–H distance fixed from 0.993 to 2.343 Å have been used to illustrate the ESIPT process. A relative lower barrier of 4.17 kcal/mol in the first excited-state potential energy curve proved the ESIPT mechanism.

Keywords

Hydrogen bonding ESIPT Electronic spectra Potential energy curve 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11304095 and 11404112) and the Science and Technology Research Key Project of Education Department of Henan Province of China (Grant No. 13A140690).

References

  1. 1.
    Beens H, Grellmann KH, Gurr M, Weller AH (1965) Discuss Faraday Soc 39:183CrossRefGoogle Scholar
  2. 2.
    Weller AH (1956) Z Elektrochem 60:1144Google Scholar
  3. 3.
    Weller AH (1961) Prog React Kinet 1:187Google Scholar
  4. 4.
    Studer SL, Chou PT, McMorrow D (1989) Chem Phys Lett 161:361CrossRefGoogle Scholar
  5. 5.
    Chou PT, Martinez ML, Cooper WC, McMorrow D, Collins ST, Kasha M (1992) J Phys Chem 96:5203CrossRefGoogle Scholar
  6. 6.
    Chou PT, Martinez ML, Studer SL (1991) J Am Chem Soc 113:5881CrossRefGoogle Scholar
  7. 7.
    Pant DD, Joshi HC, Bisht PB, Tripathi HB (1994) Chem Phys 185:137CrossRefGoogle Scholar
  8. 8.
    Mandal A, Guha D, Mukherjee S (2001) J Mol Spectrosc 210:183CrossRefGoogle Scholar
  9. 9.
    Cicoira F, Santato C (2007) Adv Funct Mater 17:3421CrossRefGoogle Scholar
  10. 10.
    Zhang XQ, Liu YF, Wang Y (2014) Theor Chem Acc 133:1485CrossRefGoogle Scholar
  11. 11.
    Douhal A, Lahmani F, Zewail A (1996) Chem Phys 207:477CrossRefGoogle Scholar
  12. 12.
    Zhao JF, Yao HB, Liu JY, Hoffmann MR (2015) J Phys Chem A 119:681CrossRefGoogle Scholar
  13. 13.
    Chen JS, Liu RZ, Yang Y, Chu TS (2014) Theor Chem Acc 133:1411CrossRefGoogle Scholar
  14. 14.
    Paul BK, Samanta A, Guchhait N (2010) Photochem Photobiol Sci 9:57CrossRefGoogle Scholar
  15. 15.
    Wang Y, Yin H, Shi Y, Jin M, Ding D (2014) New J Chem 38:4458CrossRefGoogle Scholar
  16. 16.
    Sobolewski AL, Domcke W (1998) Chem Phys 232:257CrossRefGoogle Scholar
  17. 17.
    Zhao JF, Chen JS, Liu JY, Hoffmann MR (2015) Phys Chem Chem Phys 17:11990CrossRefGoogle Scholar
  18. 18.
    Yang DP, Yang YG, Liu YF (2014) J Cluster Sci 25:467CrossRefGoogle Scholar
  19. 19.
    Adamo C, Bahers TL, Savarese M, Wilbraham L, Garcia G, Fukuda R, Ehara M, Rega N, Ciofini L (2015) Coordin Chem Rev 304–305:166CrossRefGoogle Scholar
  20. 20.
    Yang DP, Yang YG, Liu YF (2014) Spectrochim Acta, Part A 117:379CrossRefGoogle Scholar
  21. 21.
    Liu YF, Ding J, Liu R, Shi D, Sun J (2009) J Comput Chem 30:2723CrossRefGoogle Scholar
  22. 22.
    Zhao JF, Chen JS, Cui YL, Wang J, Xia LX, Dai YM, Song P, Ma FC (2015) Phys Chem Chem Phys 17:1142CrossRefGoogle Scholar
  23. 23.
    Song P, Ma FC (2013) Int Rev Phys Chem 32:589CrossRefGoogle Scholar
  24. 24.
    Zhao JF, Song P, Ma FC (2014) Commun Comput Chem 2:117Google Scholar
  25. 25.
    Yang DP, Zhao F, Zheng R, Wang YS, Lv J (2015) Theor Chem Acc 134:62CrossRefGoogle Scholar
  26. 26.
    Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Chem Rev 109:897CrossRefGoogle Scholar
  27. 27.
    Samuel IDW, Turnbull GA (2007) Chem Rev 107:1272CrossRefGoogle Scholar
  28. 28.
    Kwon JE, Park SY (2011) Adv Mater 23:3615CrossRefGoogle Scholar
  29. 29.
    Jacquemin D, Adamo C (2015) Computational molecular electronic spectroscopy with TD-DFT. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Laurent AD, Adamo C, Jacquemin D (2014) Phys Chem Chem Phys 16:14334CrossRefGoogle Scholar
  31. 31.
    Moorell B, Charaf-Eddin A, Planchat A, Adamo C, Autschbach J, Jacquemin D (2014) J Chem Theory Comput 10:4599CrossRefGoogle Scholar
  32. 32.
    Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845CrossRefGoogle Scholar
  33. 33.
    Zhao GJ, Han KL (2008) J Comput Chem 29:2010CrossRefGoogle Scholar
  34. 34.
    Jacquemin D, Adamo C (2011) J Chem Theory Comput 7:369CrossRefGoogle Scholar
  35. 35.
    Zhao GJ, Han KL (2012) Acc Chem Res 45:404CrossRefGoogle Scholar
  36. 36.
    Jacquemin D, Bahers TL, Adamo C, Ciofini L (2012) Phys Chem Chem Phys 14:5383CrossRefGoogle Scholar
  37. 37.
    Jacquemin D, Mennucci B, Adamo C (2011) Phys Chem Chem Phys 13:16987CrossRefGoogle Scholar
  38. 38.
    Kim B, Kim H, Helal A (2015) Sensors Actuators B Chem 206:430–434CrossRefGoogle Scholar
  39. 39.
    Morales AR, Schafer-Hales KJ, Yanez CO, Bondar MV, Przhonska OV, Marcus AI, Belfield KD (2009) ChemPhysChem 10:2073CrossRefGoogle Scholar
  40. 40.
    Ishikawa H, Iwata K, Hamaguchi H (2002) J Phys Chem A 106:2305CrossRefGoogle Scholar
  41. 41.
    Chakraborty A, Kar S, Nath DN, Guchhait N (2006) J Phys Chem A 110:12089CrossRefGoogle Scholar
  42. 42.
    Gomez I, Reguero M, Boggio-Pasqua M, Robb MA (2005) J Am Chem Soc 127:7119CrossRefGoogle Scholar
  43. 43.
    Li X, McCarroll M, Kohli P (2006) Langmuir 22:8615CrossRefGoogle Scholar
  44. 44.
    Fajari L, Fors P, Lang K, Nonell S, Trull FR (1996) J Photochem Photobiol A Chem 93:119CrossRefGoogle Scholar
  45. 45.
    Simon JD (1988) Acc Chem Res 21:128CrossRefGoogle Scholar
  46. 46.
    Banares L, Heikal AA, Zewail A (1992) J Phys Chem 96:4127CrossRefGoogle Scholar
  47. 47.
    Ajayaghosh A, Vijayakumar C, Praveen VK, Babu SS, Varghese R (2006) J Am Chem Soc 128:7174CrossRefGoogle Scholar
  48. 48.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Cheeseman G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar, SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg J, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. RevisionA 02 Gaussian Inc. Wallingford CTGoogle Scholar
  49. 49.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  50. 50.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200CrossRefGoogle Scholar
  51. 51.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  52. 52.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  53. 53.
    Kerkines ISK, Petsalakis ID (2011) J Phys Chem A 115:834CrossRefGoogle Scholar
  54. 54.
    Robinson D, Besley NA, Lunt EAM, O’Shea P, Hirst JD (2009) J Phys Chem B 113:2535CrossRefGoogle Scholar
  55. 55.
    Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond, vol 1. North Holland, Amsterdam The NetherlandsGoogle Scholar
  56. 56.
    Treutler O, Ahlrichs R (1995) J Chem Phys 102:346CrossRefGoogle Scholar
  57. 57.
    Furche F, Ahlrichs R (2002) J Chem Phys 117:7433CrossRefGoogle Scholar
  58. 58.
    Saga Y, Shibata Y, Tamiaki H (2010) J Photochem Photobiol C Photochem Rev 11:15CrossRefGoogle Scholar
  59. 59.
    Serrano-Andres L, Merchan M (2009) J Photochem Photobiol C Photochem Rev 10:21CrossRefGoogle Scholar
  60. 60.
    Zhao JF, Li P (2015) RSC Adv 5:73619CrossRefGoogle Scholar
  61. 61.
    Sobolewski AL, Domcke W (1999) Phys Chem Chem Phys 1:3065CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dapeng Yang
    • 1
    • 2
    Email author
  • Peiying Li
    • 3
  • Rui Zheng
    • 1
  • Yusheng Wang
    • 1
  • Jian Lv
    • 1
  1. 1.College of Mathematics and Information ScienceNorth China University of Water Resources and Electric PowerZhengzhouChina
  2. 2.State Key Laboratory of Molecular Reaction Dynamics, Theoretical and Computational Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  3. 3.College of Electrical Engineering and AutomationLuoyang Institute of Science and TechnologyLuoyangChina

Personalised recommendations