Skip to main content
Log in

Reparameterization of 12-6 Lennard-Jones potentials based on quantum mechanism results for novel tetrahedral N4 (Td) explosives

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Polynitrogen explosives, such as N4 (Td), are promising high-energy–density materials with environmentally friendly decomposing products. In this study, the density of unsynthesized N4 (Td), has been theoretically predicted to estimate their performance by using molecular dynamics (MD) simulations. The intermolecular interactions are described by the Dreiding-like 12-6 Lennard-Jones (LJ) potential. The parameters of 12-6 LJ potential for N4 (Td) have been re-optimized after considering some important factors in terms of the stability and reliability of the results, such as the amount of samplings, target densities, temperature, initial sampling force fields, the cutoff values of binding energies, and three-body interactions. The accuracy of the reparameterized 12-6 LJ potentials have been validated through the comparison of the CCSD(T)/CBS and MP2/cc-PVDZ binding energies of face-to-face dimer configurations with the center-to-center distances from 2.8–7 Å. Our MD results predict that N4 (Td) is gaseous at the standard temperature and pressure since its average density is 0.002 g cm−3. However, N4 (Td) can be condensed when the temperature is lowered than 250 K at 1 atm. or the pressure is higher than 55 atm. at the room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klapotke TM (2007) Struct Bond 125:85–121

    Article  Google Scholar 

  2. Lauderdale WJ, Stanton JF, Bartlett RJ (1992) J Phys Chem 96:1173–1178

    Article  CAS  Google Scholar 

  3. Perera SA, Bartlett RJ (1999) Chem Phys Lett 314:381

    Article  CAS  Google Scholar 

  4. Tobita M, Bartlett RJ (2001) J Phys Chem A 105:4107

    Article  CAS  Google Scholar 

  5. Eremets MI, Gavriliuk AG, Trojan IA, Dzivenkno DA, Boehler R (2004) Nat Mater 3:558

    Article  CAS  Google Scholar 

  6. Eremets MI, Gavriliuk AG, Serebryanaya NR, Trojan IA, Dzivenkno DA, Boehler R, Mao HK, Hemley RJ (2004) J Chem Phys 121:11296

    Article  CAS  Google Scholar 

  7. Lee TJ, Rice JE (1991) J Chem Phys 94:1215

    Article  CAS  Google Scholar 

  8. Dunn KM, Morokuma K (1995) J Chem Phys 102:4904

    Article  CAS  Google Scholar 

  9. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins: Struct, Funct, Bioinf 65:712–725

    Article  CAS  Google Scholar 

  10. Damm W, Frontera A, Tirado-Rives J, Jorgensen WL (1997) J Comput Chem 18:1955–1970

    Article  CAS  Google Scholar 

  11. Cowan RD, Fickett W (1956) J Chem Phys 24:932

    Article  CAS  Google Scholar 

  12. Mader CL (1979) Numerical modeling of detonations. University of California, Berkeley

    Google Scholar 

  13. Fickett W (1979) Am J Phys 47:1050–1059

    Article  CAS  Google Scholar 

  14. Goerigk L, Grimme S (2011) PCCP 13:6670–6688

    Article  CAS  Google Scholar 

  15. Zhang IY, Xu X, Jung Y, Goddard WA (2011) PNAS 108:19896–19990

    Article  CAS  Google Scholar 

  16. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063–1079

    Article  CAS  Google Scholar 

  17. Curtiss LA, Redfern PC, Raghavachari K, Pople JA (1998) J Chem Phys 109:42–55

    Article  CAS  Google Scholar 

  18. Cho SG, Goh EM, Kim JK (2001) Bull Korean Chem Soc 22:775–778

    CAS  Google Scholar 

  19. Tarver CM (1979) J Chem Eng Data 24:137

    Article  Google Scholar 

  20. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Ghanbarzadeh M, Azarniamehraban J (2013) Propellants, Explos, Pyrotech 38:95–102

    Article  CAS  Google Scholar 

  21. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Nazari HR, Azarniamehraban J (2009) J Hazard Mater 172:1218–1228

    Article  CAS  Google Scholar 

  22. Keshavarz MH (2007) J Hazard Mater 145:263–269

    Article  CAS  Google Scholar 

  23. Qiu L, Xiao H, Gong X, Ju X, Zhu W (2007) J Hazard Mater 141:280–288

    Article  CAS  Google Scholar 

  24. Rice BM, Hare JJ, Byrd EFC (2007) J Phys Chem A 111:10874–10879

    Article  CAS  Google Scholar 

  25. Murray JS, Brinck T, Lane P, Paulsen K, Politzer P (1994) J Mol Struc-Theochem 307:55–64

    Article  Google Scholar 

  26. Politzer P, Lane P, Murray JS (2011) Cent Eur J Energ Mat 8:39–52

    CAS  Google Scholar 

  27. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  28. Pan JF, Lee YW (2004) PCCP 6:471–473

    Article  CAS  Google Scholar 

  29. Holden JR, Du Z, Ammon HL (1993) J Comput Chem 14:422–437

    Article  CAS  Google Scholar 

  30. Haskins PJ, Fellows J, Cook MD, Wood A (2002) Molecular level studies of polynitrogen explosives. In: Proceedings of 12th international detonation symposium

  31. Hesselmann A, Jansen G, Schutz M (2006) J Am Chem Soc 128:11730–11731

    Article  CAS  Google Scholar 

  32. Cacelli I, Cinacchi G, Prampolini G, Tani A (2004) J Am Chem Soc 126:14278–14286

    Article  CAS  Google Scholar 

  33. Cacelli I, Cimoli A, Gaetani LD, Prampolini G, Tani A (2009) J Chem Theory Comput 5:1865–1876

    Article  CAS  Google Scholar 

  34. Kubar T, Jurecka P, Cyerny J, Rezac J, Otyepka M, Valdes H, Hobza P (2007) J Phys Chem A 111:5642–5647

    Article  CAS  Google Scholar 

  35. Mayne CG, Saam J, Schulten K, Tajkhorshid E, Gumbart JC (2013) J Comput Chem 34:2757–2770

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J (2003) Revision D.01

  37. Semrouni D, Cramer CJ, Gagliardi L (2015) Theor Chem Acc 134:1590

    Article  Google Scholar 

  38. Wu JC, Chattree G, Ren P (2012) Theor Chem Acc 131:1138

    Article  Google Scholar 

  39. Anderson BJ, Tester JW, Trout BL (2004) J Phys Chem B 108:18705–18715

    Article  CAS  Google Scholar 

  40. Amovilli C, Cacelli I, Cinacchi G, De Gaetani L, Prampolini G, Tani A (2007) Theor Chem Acc 117:885–901

    Article  CAS  Google Scholar 

  41. Kramer C, Gedeck P, Meuwly M (2013) J Chem Theory Comput 9:1499–1511

    Article  CAS  Google Scholar 

  42. Oakley MT, Wheatley RJ (2009) J Chem Phys 130:034110

    Article  Google Scholar 

  43. Han J, Mazack MJM, Zhang P, Truhlar DG, Gao J (2013) J Chem Phys 139:054503

    Article  Google Scholar 

  44. Theodorou DN, Suter UW (1984) Macromolecules 18:1467–1478

    Article  Google Scholar 

  45. Cacelli I, Cimoli A, Livotto PR, Prampolini G (2012) J Comput Chem 33:1055–1067

    Article  CAS  Google Scholar 

  46. Prampolini G, Livotto PR, Cacelli I (2015) J Chem Theory Comput 11:5182–5196

    Article  CAS  Google Scholar 

  47. Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104

    Article  Google Scholar 

  48. Jurecka P, Sponer J, Cerny J, Hobza P (2006) PCCP 8:1985

    Article  CAS  Google Scholar 

  49. Rezac J, Hobza P (2013) J Chem Theory Comput 9:2151–2155

    Article  CAS  Google Scholar 

  50. Riley KE, Platts JA, Rezac J, Hobza P, Hill JG (2012) J Phys Chem A 116:4159–4169

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone B, Mennucci, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF (2009) Revision D.01

  52. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL, Lambrecht DS, Distasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T (2010) J Phys Chem B 114:2549–2564

    Article  CAS  Google Scholar 

  53. Zhao DX, Liu C, Wang FF, Yu CY, Gong LD, Liu SB, Yang ZZ (2010) J Chem Theory Comput 6:795–804

    Article  CAS  Google Scholar 

  54. Nose S (1984) J Chem Phys 81:511–519

    Article  CAS  Google Scholar 

  55. Williams DE, Cox SR (1984) Acta Crystallography B40:404–417

    Article  CAS  Google Scholar 

  56. Panas I, Snis A, Acke F, Johnson T (1999) Chem Phys Lett 302:431–436

    Article  CAS  Google Scholar 

  57. Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243

    Article  CAS  Google Scholar 

  58. Mcdaniel JG, Schmidt JR (2014) J Phys Chem B 118:8042–8053

    Article  CAS  Google Scholar 

  59. Kennedy MR, Mcdonald AR, Iii AED, Marshall S, Podeszwa R, Sherrill CD (2014) J Chem Phys 140:121104

    Article  Google Scholar 

  60. Schmidt JR, Yu K, Mcdaniel JG (2015) Acc Chem Res 48:548–556

    Article  CAS  Google Scholar 

  61. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  62. Nose S (1984) J Chem Phys 81:511–519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank National Science Foundation of China (Grants: 21173138), Fundamental Research Funds for the Central Universities (Grant: GK201303004), and Shaanxi Innovative Team of Key Science and Technology (2013KCT-17) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. W. Yin or Y. Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S.S., Xu, T., Yin, S.W. et al. Reparameterization of 12-6 Lennard-Jones potentials based on quantum mechanism results for novel tetrahedral N4 (Td) explosives. Theor Chem Acc 135, 56 (2016). https://doi.org/10.1007/s00214-015-1800-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1800-x

Keywords

Navigation