Skip to main content
Log in

Reductive coupling of carbon monoxide to glycolaldehyde and hydroxypyruvaldehyde polyanions in binuclear cyclopentadienyl lanthanum and lutetium derivatives: analogies to cyclooctatetraene thorium chemistry

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Cloke and coworkers have recently (2006–2012) shown that reaction of carbon monoxide with organouranium compounds results in reductive coupling to yield the oligomeric anions C n O 2− n (n = 2, 3, 4). In order to explore the possibilities of similar reductive coupling of carbon monoxide in organolanthanide systems, the structures and thermochemistry of the cyclopentadienyllanthanide carbonyls Cp2Ln2(CO) n (n = 2, 3, 4, 5) have been investigated using lanthanum and lutetium, which are diamagnetic in the favored +3 oxidation state. All of these Cp2Ln2(CO) n structures have long Ln···Ln distances exceeding 4.2 Å for La and 3.6 Å for Lu, indicating the lack of direct metal–metal bonding and suggesting the normally favored +3 oxidation state for these lanthanides. In the dicarbonyls Cp2Ln2(CO)2, the two CO groups couple to form a bridging µ-C2O2 4− ligand, which can be derived by removal of four protons from glycolaldehyde (hydroxyacetaldehyde). Similarly, in the tricarbonyls, the three CO groups couple to form a bridging µ-C3O3 4− ligand, which can be derived by removal of four protons from hydroxypyruvaldehyde. However, the lowest energy structures for the tetracarbonyls Cp2Ln2(CO)4 (by more than 13 kcal/mol) have four separate η2-µ-CO ligands bonded to the central Ln2 unit through both their carbon and oxygen atoms. Thermochemistry of the Cp2Ln2(CO) n systems suggests viability of Cp2Ln2(CO)2 and Cp2Ln2(CO)4. However, Cp2Ln2(CO)3 is predicted to be disfavored relative to disproportionation into Cp2Ln2(CO)2 + Cp2Ln2(CO)4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xie H, Wang J, Qin Z, Shi L, Tang Z, Xing X (2014) J Phys Chem A 118:9380

    Article  CAS  Google Scholar 

  2. Ricks AM, Gagliardi L, Duncan MA (2010) J Am Chem Soc 132:15905

    Article  CAS  Google Scholar 

  3. Gardner BM, Liddle ST (2013) Eur J Inorg Chem 2013(22–23):3753

    Article  CAS  Google Scholar 

  4. La Pierre HS, Meyer K (2014) Prog Inorg Chem 58:303

    Article  CAS  Google Scholar 

  5. Arnold PL, Turner ZR, Bellabarba RM, Tooze RP (2011) Chem Sci 2:77

    Article  CAS  Google Scholar 

  6. Gardner BM, Stewart JC, Davis AL, McMaster J, Lewis W, Blake AJ, Liddle ST (2012) Proc Natl Acad Sci USA 109:9265

    Article  CAS  Google Scholar 

  7. Summerscales OT, Cloke FGN, Hitchcock PB, Green JC, Hazari N (2006) Science 311:829

    Article  CAS  Google Scholar 

  8. Summerscales OT, Cloke FGN, Hitchcock PB, Green JC, Hazari N (2006) J Am Chem Soc 128:9602

    Article  CAS  Google Scholar 

  9. Frey AS, Cloke FGN, Hitchcock PB, Day IJ, Green JC, Aitken G (2008) J Am Chem Soc 130:13681

    Google Scholar 

  10. Aitken G, Hazari N, Frey ASP, Cloke FGN, Summerscales OT, Green JC (2011) Dalton Trans 40:11080

    Article  CAS  Google Scholar 

  11. McKay D, Frey ASP, Green JC, Cloke FGN, Maron L (2012) Chem Comm 48:4118

    Article  CAS  Google Scholar 

  12. Li H, Feng H, Sun W, King RB, Schaefer HF (2013) Inorg Chem 2:6893

    Article  Google Scholar 

  13. Li H, Feng H, Sun W, King RB, Schaefer HF (2014) New J Chem 38:6031

    Article  CAS  Google Scholar 

  14. Federoňko M, Temkovic P, Konigstein J, Kováčik V, Tvaroška I (1980) Carbohydr Res 87:35

    Article  Google Scholar 

  15. Evans WL, Waring CE (1926) J Am Chem Soc 48:2678

    Article  CAS  Google Scholar 

  16. Hesse G, Ramisch F, Renner K (1956) Chem Ber 89:2137

    Article  CAS  Google Scholar 

  17. Reeves HC, Ajl SJJ (1965) Biol Chem 240:569

    CAS  Google Scholar 

  18. Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) Angew Chem Int Ed 45:3804

    Article  CAS  Google Scholar 

  19. Sieffert N, Bühl M (2010) J Am Chem Soc 132:8056

    Article  CAS  Google Scholar 

  20. Schyman P, Lai W, Chen H, Wang Y, Shaik S (2011) J Am Chem Soc 133:7977

    Article  CAS  Google Scholar 

  21. Adams RD, Pearl WC, Wong YO, Zhang Q, Hall MB, Walensky JR (2011) J Am Chem Soc 133:12994

    Article  CAS  Google Scholar 

  22. Lonsdale R, Olah J, Mulholland AJ, Harvey JN (2011) J Am Chem Soc 133:15464

    Article  CAS  Google Scholar 

  23. Crawford L, Cole-Hamilton DJ, Drent E, Bühl M (2014) Chem Eur J 20:13923

    Article  CAS  Google Scholar 

  24. Zhekova H, Krykunov M, Autschbach J, Ziegler T (2014) J Chem Theory Comput 10:3299

    Article  CAS  Google Scholar 

  25. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  26. Perdew JP (1986) Phys Rev B 33:882

    Article  Google Scholar 

  27. Tsipis AC, Kefalidis CE, Tsipis CA (2008) J Am Chem Soc 130:9144

    Article  CAS  Google Scholar 

  28. Infante I, Raab J, Lyon JT, Liang B, Andrews L, Gagliardi LJ (2007) Phys Chem A 111:11996

    Article  CAS  Google Scholar 

  29. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) Theory Chem Acc 120:215

    Article  CAS  Google Scholar 

  31. Cao X, Dolg M (2001) J Chem Phys 115:7348

    Article  CAS  Google Scholar 

  32. Cao X, Dolg M (2002) J Mol Struct 581:139

    Article  CAS  Google Scholar 

  33. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  CAS  Google Scholar 

  34. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  CAS  Google Scholar 

  35. Frisch MJ et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford

    Google Scholar 

  36. Papas BN, Schaefer HF (2006) J Mol Struct 768:275

    Article  Google Scholar 

  37. Sunderlin LS, Wang D, Squires RR (1993) J Am Chem Soc 115:12060

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Chinese National Natural Science Foundation (Grant Nos. 11447228 and 11174236), the Natural Science Foundation of the Department of Education in Sichuan Province of China (Grant No. 15ZB0129), the Funds for Sichuan Distinguished Scientists (Grant No. 2015JQ0042—China), the Funds for the Youth Innovation Team of Sichuan Province (Grant No. 14TD0013—China), the Program of the Key Scientific Research in Xihua University (Grant No. z1313320), Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province (Grant No. 05020732—China), and the US National Science Foundation (Grants CHE-1057466 and CHE-1361178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Feng or R. Bruce King.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Feng, H., Sun, W. et al. Reductive coupling of carbon monoxide to glycolaldehyde and hydroxypyruvaldehyde polyanions in binuclear cyclopentadienyl lanthanum and lutetium derivatives: analogies to cyclooctatetraene thorium chemistry. Theor Chem Acc 135, 22 (2016). https://doi.org/10.1007/s00214-015-1797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1797-1

Keywords

Navigation