Advertisement

Intramolecular halogen bonding: an interacting quantum atoms study

  • Meziane Yahia-Ouahmed
  • Vincent TognettiEmail author
  • Laurent JoubertEmail author
Regular Article
Part of the following topical collections:
  1. CHITEL 2015 - Torino - Italy

Abstract

In this paper, we study the nature of recently synthesized intramolecular halogen bonds (Widner et al. in J Org Chem 79:6269–6278, 2014) within the framework of atoms-in-molecules theory using the interacting quantum atoms energy decomposition. This scheme not only enables us to determine the stabilizing or destabilizing character of such interactions depending on the nature of the halogen atom and of the main substituents, but also provides a clear estimation of electrostatic and covalency contributions. Furthermore, it affords useful tools for the rationalization of the sometimes unusual observed topologies through the exchange channels competition paradigm. Finally, comparisons with intermolecular halogen bonds are presented, and terminology issues are discussed in light of some unexpected counterintuitive results.

Keywords

Halogen bonds Quantum theory of atoms in molecules (QTAIM) Interacting quantum atoms (IQA) Electrostatic interaction Covalency Bond critical points 

Notes

Acknowledgments

We gratefully acknowledge the CRIHAN computational center for providing HPC resources. VT and LJ thank the Centre National de la Recherche Scientifique (CNRS) for a “Chaire d’Excellence” at the University of Rouen. MYO acknowledges the CNRS and the “Région Haute-Normandie” for Ph.D. funding.

References

  1. 1.
    Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 85:1711–1713CrossRefGoogle Scholar
  2. 2.
    Metrangolo P, Resnati G (2008) Halogen bonding: fundamentals and applications, structure and bonding, vol 126. Springer, BerlinGoogle Scholar
  3. 3.
    Metrangolo P, Pilati T, Resnati G (2006) CrystEngComm 8:946–947CrossRefGoogle Scholar
  4. 4.
    Metrangolo P, Resnati G (2012) Cryst Growth Des 12:5835–5838CrossRefGoogle Scholar
  5. 5.
    Fourmigué M (2009) Curr Opin Solid State Mater Sci 13:36–45CrossRefGoogle Scholar
  6. 6.
    Legon AC (2010) Phys Chem Chem Phys 12:7736–7747CrossRefGoogle Scholar
  7. 7.
    Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Chem Soc Rev 40:2267–2278CrossRefGoogle Scholar
  8. 8.
    Lu Y, Wang Y, Zhu W (2010) Phys Chem Chem Phys 12:4543–4551CrossRefGoogle Scholar
  9. 9.
    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789–16794CrossRefGoogle Scholar
  10. 10.
    Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher J-M, Hartmann G, Banner DW, Haap W, Diederich F (2011) Angew Chem Int Ed 50:314–318CrossRefGoogle Scholar
  11. 11.
    Vargas Jentzsch A, Matile S (2013) J Am Chem Soc 135:5302–5303CrossRefGoogle Scholar
  12. 12.
    Scholfield MR, Zanden CMV, Carter M, Ho PS (2013) Protein Sci 22:139–152CrossRefGoogle Scholar
  13. 13.
    Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) Acc Chem Res 46:2686–2695CrossRefGoogle Scholar
  14. 14.
    Lefèvre G, Franc G, Adamo C, Jutand A, Ciofini I (2012) Organometallics 31:914–920CrossRefGoogle Scholar
  15. 15.
    Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM (2013) Angew Chem Int Ed 52:7028–7032CrossRefGoogle Scholar
  16. 16.
    Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) J Med Chem 52:2854–2862CrossRefGoogle Scholar
  17. 17.
    Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2012) J Med Chem 56:1363–1388CrossRefGoogle Scholar
  18. 18.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127CrossRefGoogle Scholar
  19. 19.
    Metrangolo P, Resnati G, Pilati T, Biella S (2008) Struct Bonding (Berlin) 126:105–136CrossRefGoogle Scholar
  20. 20.
    Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S (2011) Angew Chem Int Ed 50:11675–11678CrossRefGoogle Scholar
  21. 21.
    Jentzsch A, Matile S (2014) Top Curr Chem. Springer, Berlin. doi: 10.1007/128_2014_541
  22. 22.
    Lauher JW, Fowler FW, Goroff NS (2008) Acc Chem Res 41:1215–1229CrossRefGoogle Scholar
  23. 23.
    Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  24. 24.
    Benesi HA, Hildebrand JH (1949) J Am Chem Soc 71:2703–2707CrossRefGoogle Scholar
  25. 25.
    Novick SE, Janda KC, Klemperer W (1976) J Chem Phys 65:5115–5121CrossRefGoogle Scholar
  26. 26.
    Stephens SL, Mizukami W, Tew DP, Walker NR, Legon AC (2012) J Mol Spctros 280:47–53CrossRefGoogle Scholar
  27. 27.
    Stephens SL, Walker NR, Legon AC (2011) Phys Chem Chem Phys 13:21093–21101CrossRefGoogle Scholar
  28. 28.
    Weingarth M, Raouafi N, Jouvelet B, Duma L, Bodenhausen G, Boujlel K, Schollhorn B, Tekely P (2008) Chem Commun 45:5981–5983CrossRefGoogle Scholar
  29. 29.
    Chudzinski MG, McClary CA, Taylor MS (2011) J Am Chem Soc 133:10559–10567CrossRefGoogle Scholar
  30. 30.
    Hauchecorne D, Szostak R, Herrebout WA, van der Veken BJ (2009) ChemPhysChem 10(12):2105–2115CrossRefGoogle Scholar
  31. 31.
    Cappelletti D, Candori P, Pirani F, Belpassi L, Tarantelli F (2011) Crys Growth Des 11:4279–4283CrossRefGoogle Scholar
  32. 32.
    Hassel O, Hvoslef J (1954) Acta Chem Scand 8:873CrossRefGoogle Scholar
  33. 33.
    Hassel O (1970) Science 170:497–502CrossRefGoogle Scholar
  34. 34.
    Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem 44:57–64CrossRefGoogle Scholar
  35. 35.
    Clark T, Hennemann M, Murray J, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  36. 36.
    Murray J, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  37. 37.
    Murray J, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038CrossRefGoogle Scholar
  38. 38.
    Dominikowska J, Palusiak M (2013) Chem Phys Lett 583:8–13CrossRefGoogle Scholar
  39. 39.
    Parra RD (2015) Chem Phys Lett 637:177–181CrossRefGoogle Scholar
  40. 40.
    Bader RFW (1990) Atoms in molecules: a quantum theory. The International Series of Monographs on Chemistry: No. 22, Oxford University Press, New YorkGoogle Scholar
  41. 41.
    Popelier PLA (2000) Atoms in molecules: an introduction. Pearson Education, HarlowCrossRefGoogle Scholar
  42. 42.
    Shahi A, Arunan A (2014) Phys Chem Chem Phys 16:22935–22952CrossRefGoogle Scholar
  43. 43.
    McAllister LJ, Bruce DW, Karadakov PB (2012) J Phys Chem A 116:10621–10628CrossRefGoogle Scholar
  44. 44.
    Riley KE, Hobza P (2011) Crys Growth Des 11:4272–4278CrossRefGoogle Scholar
  45. 45.
    Grabowski SJ (2012) J Phys Chem A 116:1838–1845CrossRefGoogle Scholar
  46. 46.
    Xu L, Lv J, Sang P, Zou J-W, Yu Q-S, Xu M-B (2011) Chem Phys 379:66–72CrossRefGoogle Scholar
  47. 47.
    Domagała M, Matczak P, Palusiak M (2012) Comput Theor Chem 998:26–33CrossRefGoogle Scholar
  48. 48.
    Palusiak M (2010) J Mol Struct Theochem 945:89–92CrossRefGoogle Scholar
  49. 49.
    Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242CrossRefGoogle Scholar
  50. 50.
    Vijay Solomon R, Angeline Vedha S, Venuvanalingam P (2014) Phys Chem Chem Phys 16:7430–7440CrossRefGoogle Scholar
  51. 51.
    Politzer P, Murray JS (2013) ChemPhysChem 14:278–294CrossRefGoogle Scholar
  52. 52.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  53. 53.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8CrossRefGoogle Scholar
  54. 54.
    Syzgantseva OA, Tognetti V, Joubert L (2013) J Phys Chem A 117:8969–8980CrossRefGoogle Scholar
  55. 55.
    Tognetti V, Joubert L (2015) Theor Chem Acc 134:90CrossRefGoogle Scholar
  56. 56.
    Tognetti V, Morell C, Joubert L (2015). J Comput Chem 36:649–659CrossRefGoogle Scholar
  57. 57.
    Tognetti V, Joubert L (2016) Following halogen bonds formation with Bader’s atoms-in-molecules theory. In: Chauvin et al. (eds) Applications of topological methods in molecular chemistry. Challenges and advances in computational chemistry and physics, vol 22. Springer, Switzerland. doi: 10.1007/978-3-319-29022-5_16
  58. 58.
    Thorson RA, Woller GR, Driscoll ZL, Geiger BE, Moss CA, Schlapper AL, Speetzen ED, Bosch E, Erdély, Bowling NP (2015) Eur J Org Chem (in press). doi: 10.1002/ejoc.201403671
  59. 59.
    Widner DL, Knauf QR, Merucci MT, Fritz TR, Sauer JS, Speetzen ED, Bosch E, Bowling NP (2014) J Org Chem 79:6269–6278CrossRefGoogle Scholar
  60. 60.
    Palusiak M, Grabowski S (2008) Struct Chem 19:5–11CrossRefGoogle Scholar
  61. 61.
    Jabłoński M (2012) J Phys Chem A 116:3753–3764CrossRefGoogle Scholar
  62. 62.
    Johansson MP, Swart M (2013) Phys Chem Chem Phys 15:11543–11553CrossRefGoogle Scholar
  63. 63.
    Vijaya Pandiyan B, Deepa P, Kolandaivel P (2015) Phys Chem Chem Phys (in press). doi: 10.1039/C5CP03625A
  64. 64.
    Tognetti V, Joubert L (2013) J Chem Phys 138:024102CrossRefGoogle Scholar
  65. 65.
    Tognetti V, Joubert L (2013) Chem Phys Lett 579:122–125CrossRefGoogle Scholar
  66. 66.
    Yahia-Ouahmed M, Tognetti V, Joubert L (2015) Comput Theor Chem 1053:254–262CrossRefGoogle Scholar
  67. 67.
    Zhang Y, Lu Y, Xu Z, Ding H, Yu W, Liu H (2015) Struct Chem (in press). doi: 10.1007/s11224-015-0671-z
  68. 68.
    Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohena AJ, Yang W (2010) J Am Chem Soc 132:6498CrossRefGoogle Scholar
  69. 69.
    Poater J, Solá M, Bickelhaupt FM (2006) Chem Eur J 12:2902–2905CrossRefGoogle Scholar
  70. 70.
    Cioslowski J, Mixon ST, Edwards WD (1991) J Am Chem Soc 113:1083–1085CrossRefGoogle Scholar
  71. 71.
    Hancock RD, Nikolayenko IV (2012) J Phys Chem A 116:8572–8583CrossRefGoogle Scholar
  72. 72.
    Haaland A, Shorokhov DJ, Tverdova NV (2004) Chem Eur J 10:4416–4421CrossRefGoogle Scholar
  73. 73.
    Strenalyuk T, Haaland A (2008) Chem Eur J 14:10223–10226CrossRefGoogle Scholar
  74. 74.
    Cerpa E, Krapp A, Vela A, Merino G (2008) Chem Eur J 14:10232–10234CrossRefGoogle Scholar
  75. 75.
    Lane JR, Contreras-Garcia J, Piquemal J-P, Miller BJ, Kjaergaard HG (2013) J Chem Theory Comput 9:3263–3266CrossRefGoogle Scholar
  76. 76.
    Cormanich RA, Rittner R, O’Hagan D, Bühl M (2014) J Phys Chem A 118:7901–7910CrossRefGoogle Scholar
  77. 77.
    Tognetti V, Yahia-Ouahmed M, Joubert L (2014) J Phys Chem A 118:9791–9792CrossRefGoogle Scholar
  78. 78.
    Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Phys Rev B 76:125112CrossRefGoogle Scholar
  79. 79.
    Vydrov OA, Van Voorhis T (2009) Phys Rev Lett 103:063004CrossRefGoogle Scholar
  80. 80.
    Mezey PG (1999) Mol Phys 96:169–178CrossRefGoogle Scholar
  81. 81.
    Tognetti V, Joubert L, Cortona P, Adamo C (2009) J Phys Chem A 113:12322–12327CrossRefGoogle Scholar
  82. 82.
    Tognetti V, Joubert L, Adamo C (2010) J Chem Phys 132:211101CrossRefGoogle Scholar
  83. 83.
    Gillet N, Chaudret R, Contreras-Garcia J, Yang Y, Silvi B, Piquemal J-P (2012) J Chem Theor Comput 8:3993–3997CrossRefGoogle Scholar
  84. 84.
    Garcia L, Cisnetti F, Gillet N, Guillot R, Aumont-Nicaise M, Piquemal J-P, Desmadril M, Lambert F, Policar C (2015) J Am Chem Soc 137:1141–1146CrossRefGoogle Scholar
  85. 85.
    Jouanno L-A, Di Mascio V, Tognetti V, Joubert L, Sabot C, Renard P-Y (2014) J Org Chem 79:1303–1319CrossRefGoogle Scholar
  86. 86.
    Falkowska, E, Tognetti V, Joubert L, Jubault P, Bouillon J-P, Pannecoucke X (2015) RSC Adv 5:6864–6868CrossRefGoogle Scholar
  87. 87.
    Falkowska E, Laurent MY, Tognetti V, Joubert L, Jubault P, Bouillon J-P, Pannecoucke X (2015) Tetrahedron 71:8067–8076CrossRefGoogle Scholar
  88. 88.
    Hamdoum G, Sebban M, Tognetti V, Harrison-Marchand A, Joubert L, Maddaluno J, Oulyadi H (2015). Organometallics 34:1932–1941CrossRefGoogle Scholar
  89. 89.
    Pendás AM, Blanco MA, Francisco E (2004) J Chem Phys 120:4581–4592CrossRefGoogle Scholar
  90. 90.
    Blanco MA, Martín Pendás A, Francisco E (2005) J Chem Theory Comput 1:1096–1109CrossRefGoogle Scholar
  91. 91.
    Francisco E, Martín Pendás A, Blanco MA (2006) J Chem Theory Comput 2:90–102CrossRefGoogle Scholar
  92. 92.
    Pendás AM, Blanco MA, Francisco E (2006) J Chem Phys 125:184112CrossRefGoogle Scholar
  93. 93.
    Tognetti V, Joubert L (2014) Phys Chem Chem Phys 16:14539–14550CrossRefGoogle Scholar
  94. 94.
    Patrikeev L, Joubert L, Tognetti V, Mol Phys (in press). doi: 10.1080/00268976.2015.1113314
  95. 95.
    Popelier PLA, Kosov DS (2001) J Chem Phys 114:6539–6547CrossRefGoogle Scholar
  96. 96.
    Popelier PLA, Joubert L, Kosov DS (2001) J Phys Chem A 105:8254–8261CrossRefGoogle Scholar
  97. 97.
    Popelier PLA (2012) AIP Conf Proc 1456:261–268CrossRefGoogle Scholar
  98. 98.
    Bader RFW, Matta CF (2004) J Phys Chem A 108:8385–8394CrossRefGoogle Scholar
  99. 99.
    Tognetti V, Joubert L (2013) Chem Phys Lett 557:150–153CrossRefGoogle Scholar
  100. 100.
    Syzgantseva OA, Tognetti V, Boulangé A, Peixoto PA, Leleu S, Franck X, Joubert L (2014) J Phys Chem A 118(2014):757–764CrossRefGoogle Scholar
  101. 101.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  102. 102.
    Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  103. 103.
    Johnson ER, Becke AD, Sherrill CD, DiLabio GA (2009) J Chem Phys 131:034111CrossRefGoogle Scholar
  104. 104.
    Keith TA (2013) AIMAll (Version 14.04.17). TK Gristmill SoftwareGoogle Scholar
  105. 105.
    Guégan F, Mignon P, Tognetti V, Joubert L, Morell C (2014) Phys Chem Chem Phys 16:15558–15569CrossRefGoogle Scholar
  106. 106.
    Tang Q, Li Q (2015) Comput Theor Chem 1070:21–26CrossRefGoogle Scholar
  107. 107.
    Jahromi HJ, Eskanderi K (2013) Struct Chem 24:1281–1287CrossRefGoogle Scholar
  108. 108.
    Pendás AM, Francisco E, Blanco MA, Gatti C (2007) Chem Eur J 13:9362–9371CrossRefGoogle Scholar
  109. 109.
    Hirshfeld F (1977) Theor Chem Acc 44:129–138CrossRefGoogle Scholar
  110. 110.
    Cioslowski J (1989) J Am Chem Soc 111:8333–8336CrossRefGoogle Scholar
  111. 111.
    Besler BH, Merz KM Jr, Kollman PA (1990) J Comput Chem 11:431–439CrossRefGoogle Scholar
  112. 112.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Normandy University, COBRA UMR 6014 & FR 3038, INSA Rouen, CNRSUniversité de RouenMont St Aignan CedexFrance

Personalised recommendations