Advertisement

22π-Electrons [1.1.1.1.1] pentaphyrin as a new photosensitizing agent for water disinfection: experimental and theoretical characterization

  • Marta E. AlbertoEmail author
  • Clara Comuzzi
  • Merlyn Thandu
  • Carlo Adamo
  • Nino Russo
Regular Article
Part of the following topical collections:
  1. Health & Energy from the Sun: a Computational Perspective

Abstract

In view of their promising photosensitizing features, expanded porphyrins are gaining wide attention for their potential use both in photodynamic therapy of cancer and as likely photoactivated agent for water disinfection. Herein, we report a joint experimental and theoretical investigation on the 20-(4′-carboxyphenyl)-2,13-dimethyl-3,12-diethyl-[22] pentaphyrin complex 4. The synthesis, NMR, UV–Vis and mass characterization of the new compound together with a detailed theoretical investigation of the photophysical properties, are presented. In particular, type I and type II photoreactions have been explored by means of DFT and its TDDFT formulation characterizing the electronic absorption spectra, providing singlet–triplet energy gap, vertical ionization potential and electron affinity. Results show that title compound is able to generate the cytotoxic singlet oxygen species supporting the application of the proposed molecule as a photoactivated agent for water disinfection.

Keywords

ROS TDDFT 1O2 

Notes

Acknowledgments

M.E.A. would like to thank the Research Executive Agency (REA) and European Commission for the MSCA Individual Fellowship grant (call: H2020-MSCA-IF-2014, Project ID: 652999). This work was granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Nationale pour la Recherche. Università della Calabria, Università di Udine and ENSCP are gratefully acknowledged.

Supplementary material

214_2015_1794_MOESM1_ESM.doc (1.3 mb)
ESI–MS of PCCox, computed main bond lengths (Å) and main dihedral angles (degrees) for PCCox, main vertical singlet electronic energies for several conformations of PCCox obtained with different XC functionals in methanol, computed UV–Vis spectra, NMR computations (DOC 1346 kb)

References

  1. 1.
    Stepien M, Sprutta N, Latos-Grazynski L (2011) Angew Chem Int Ed 50:4288–4340CrossRefGoogle Scholar
  2. 2.
    Osuka A, Saito S (2011) Angew Chem Int Ed 50:4342–4373CrossRefGoogle Scholar
  3. 3.
    Qian G, Wang ZY (2010) Chem Asian J 5:1006–1029CrossRefGoogle Scholar
  4. 4.
    Sessler JL, Davis JM (2001) Acc Chem Res 34:989–997CrossRefGoogle Scholar
  5. 5.
    Ikawa Y, Takeda M, Suzuki M, Osuka A, Furuta H (2010) Chem Commun 46:5689–5691CrossRefGoogle Scholar
  6. 6.
    Tanaka T, Aratani N, Lim JM, Kim KS, Kim D, Osuka A (2011) Chem Sci 2:1414–1418CrossRefGoogle Scholar
  7. 7.
    Sarma T, Panda PK (2011) Chem Eur J 17:13987–13991CrossRefGoogle Scholar
  8. 8.
    Sessler JL, Seidel D (2003) Angew Chem Int Ed 42:5134–5175CrossRefGoogle Scholar
  9. 9.
    Jasat A, Dolphin D (1997) Chem Rev 97:2267–2340CrossRefGoogle Scholar
  10. 10.
    Lang K, Monsinger J, Wagnerova DM (2004) Coord Chem Rev 248:321–350CrossRefGoogle Scholar
  11. 11.
    DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 233–234:351–371CrossRefGoogle Scholar
  12. 12.
    Yano S, Hirohara S, Obata M, Hagiya Y, Ogura S, Ikeda I, Kataoka H, Tanaka M, Joh T (2011) J Photochem Photobiol C 12:46–67CrossRefGoogle Scholar
  13. 13.
    Allison RR, Bagnato VS, Sibata CH (2010) Future Oncol 6:929–940CrossRefGoogle Scholar
  14. 14.
    MacDonald IJ, Dougherty TJ (2001) J Porphyr Phthalocya 5:105–129CrossRefGoogle Scholar
  15. 15.
    Dolmans DE, Fukumura D, Jain RK (2003) Nat Rev Cancer 3:380–387CrossRefGoogle Scholar
  16. 16.
    Kim H, Kim W, Mackeyev Y, Lee G-S, Kim H-J, Tachikawa T, Hong S, Lee S, Kim J, Wilson LJ, Majima T, Alvarez PJJ, Choi W, Lee J (2012) Environ Sci Technol 46:9606–9613CrossRefGoogle Scholar
  17. 17.
    Han SK, Sik RH, Motten AG, Chignell CF, Bilski PJ (2009) Photochem Photobiol 85:1299–1305CrossRefGoogle Scholar
  18. 18.
    Kohn T, Nelson KL (2007) Environ Sci Technol 41:192–197CrossRefGoogle Scholar
  19. 19.
    Romero OC, Straub AP, Kohn T, Nguyen TH (2011) Environ Sci Technol 45:10385–10393CrossRefGoogle Scholar
  20. 20.
    Christoforidis KC, Louloudi M, Deligiannakis Y (2010) Appl Catal B Environ 95:297–302CrossRefGoogle Scholar
  21. 21.
    Gmurek M, Kubat P, Mosinger J, Miller JS (2011) Photochem Photobiol A Chem 223:50–56CrossRefGoogle Scholar
  22. 22.
    Comuzzi C, Cogoi S, Overhand M, Van der Marel GA, Overkleeft HS, Xodo LE (2006) J Med Chem 49:196–204CrossRefGoogle Scholar
  23. 23.
    Comuzzi C, Cogoi S, Xodo LE (2006) Tetrahedron 62:8147–8151CrossRefGoogle Scholar
  24. 24.
    Ballico M, Rapozzi V, Xodo LE, Comuzzi C (2011) Eur J Med Chem 46:712–720CrossRefGoogle Scholar
  25. 25.
    Fortes Ramos Sousa F, Quartarolo AD, Sicilia E, Russo N (2012) J Phys Chem B 116:10816–10823CrossRefGoogle Scholar
  26. 26.
    Rossi G, Goi D, Comuzzi C (2012) J Water Health 10:390–399CrossRefGoogle Scholar
  27. 27.
    Fedele R, Comuzzi C, Rossi G, Goi D (2015) US Patent 8940775 B2Google Scholar
  28. 28.
    Casida ME (1995) In: Chong DP (ed) Time-dependent density-functional response theory for molecules, vol 1. World Scientific, Singapore, pp 155–192Google Scholar
  29. 29.
    Adamo C, Jacquemin D (2013) Chem Soc Rev 42:845–856CrossRefGoogle Scholar
  30. 30.
    Alberto ME, De Simone BC, Mazzone G, Quartarolo AD, Russo N (2014) J Chem Theory Comput 10:4006–4013CrossRefGoogle Scholar
  31. 31.
    Alberto ME, Iuga C, Quartarolo AD, Russo N (2013) J Chem Inf Model 53:2334–2340CrossRefGoogle Scholar
  32. 32.
    Alberto ME, De Simone BC, Mazzone G, Marino T, Russo N (2015) Dyes Pigm 2015(120):335–339CrossRefGoogle Scholar
  33. 33.
    Alberto ME, Mazzone G, Quartarolo AD, Fortes Ramos Sousa F, Sicilia E, Russo N (2014) J Comput Chem 35:2107–2113CrossRefGoogle Scholar
  34. 34.
    Alberto ME, Marino T, Quartarolo AD, Russo N (2013) Phys Chem Chem Phys 15:16167–16171CrossRefGoogle Scholar
  35. 35.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C (2009) Acc Chem Res 42:326–334CrossRefGoogle Scholar
  36. 36.
    Alonso M, Geerlings P, De Proft F (2013) J Org Chem 78:4419–4431CrossRefGoogle Scholar
  37. 37.
    Rachlewicz K, Sprutta N, Latos-Grazynski L, Chmielewski PJ, Szterenberg L (1998) J Chem Soc Perkin Trans 2:959–968CrossRefGoogle Scholar
  38. 38.
    Rachlewicz K, Latos-Grazynski L, Gebauer A, Vivian A, Sessler JL (1999) J Chem Soc Perkin Trans 2:2189–2195CrossRefGoogle Scholar
  39. 39.
    Chmielewski PJ, Latos-Grazyński L, Rachlewicz K (1995) Chem Eur J 1:68–73CrossRefGoogle Scholar
  40. 40.
    Yoneda T, Mori H, Sun Lee B, Yoon M-C, Kim D, Osuka A (2012) Chem Commun 48:6785–6787CrossRefGoogle Scholar
  41. 41.
    Latouche C, Skouteris D, Palazzetti F, Barone V (2015) J Chem Theory Comput 11:3281–3289CrossRefGoogle Scholar
  42. 42.
    Holland JP, Green JC (2010) J Comput Chem 31:1008–1014Google Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford CTGoogle Scholar
  44. 44.
    Ditchfield R, Hehre WJ, Pople JAJ (1971) Chem Phys 54:724–728Google Scholar
  45. 45.
    Hehre WJ, Ditchfield R, Pople JAJ (1972) Chem Phys 56:2257–2261Google Scholar
  46. 46.
    Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260CrossRefGoogle Scholar
  47. 47.
    Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54CrossRefGoogle Scholar
  48. 48.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  49. 49.
    Ovchinnikov AA, Labanowski JK (1996) Phys Rev A 56:3946–3952CrossRefGoogle Scholar
  50. 50.
    Becke AD (1993) J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  51. 51.
    Magyarfalvi G, Pulay P (2003) J Chem Phys 119:1350–1357CrossRefGoogle Scholar
  52. 52.
    Di Tommaso S, David P, Picolet K, Gabant M, David H, Morançais J-L, Gomar J, Leroy F, Adamo C (2013) RSC Adv 3:13764–13771CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marta E. Alberto
    • 1
    Email author
  • Clara Comuzzi
    • 2
  • Merlyn Thandu
    • 2
  • Carlo Adamo
    • 1
  • Nino Russo
    • 3
  1. 1.Institut de Recherche de Chimie Paris, IRCP CNRS UMR-8247, École Nationale Superieure de Chimie de ParisChimie ParisTechParisFrance
  2. 2.Department of Chemistry, Physic and EnvironmentUniversity of UdineUdineItaly
  3. 3.Dipartimento di Chimica e Tecnologie ChimicheUniversità della CalabriaRendeItaly

Personalised recommendations