Energy, structure and topological characterization of the isomers of the 1/2 diacetyl/water complex

  • D. Dargent
  • E. L. Zins
  • B. Madebène
  • M. E. AlikhaniEmail author
Regular Article
Part of the following topical collections:
  1. CHITEL 2015 - Torino - Italy


The diacetyl (DAC) molecule is both an atmospheric pollutant and a simple analogue of small biological molecules. A methodological approach based on topological tools is extended and applied to the search of stable isomers of the di-hydrated 1/2 DAC/H2O complex. Ten isomers corresponding to local minima on the potential energy surface were identified using the MP2/aug-cc-pVDZ level of theory. An energetic, geometric and topological characterization of these isomers was carried out. The approach of the supermolecule was applied to estimate interaction energies. Two families of isomers, characterized by cooperative and non-cooperative interactions, respectively, were identified. Among the ten isomers, only the three most stable ones present a cooperative effect. The interaction between a water dimer and the DAC molecule appears to be energetically much more favorable than two water molecules interacting solely with the DAC molecule. The interaction of the water dimer with the DAC molecule strongly affects the intermolecular interaction between the two water molecules, from a geometric and topologic point of view. Furthermore, in addition to hydrogen bondings, another type of electrostatic interaction is involved in the two most stable isomers: one of the water molecules is interacting with the DAC molecule through a “classical” hydrogen bonding, whereas the other one forms a π–hole-like interaction.


Di-hydrated complexes Topological analysis MESP QTAIM π–hole-like interaction Cooperative effect 

Supplementary material

214_2015_1793_MOESM1_ESM.docx (3.7 mb)
Supplementary material 1 (DOCX 3788 kb)


  1. 1.
    Pauling L (1931) J Am Chem Soc 53:1367–1400CrossRefGoogle Scholar
  2. 2.
    Pauling L (1939) The nature of the chemical bond. Cornell University Press, IthacaGoogle Scholar
  3. 3.
    Astbury WT, Street H (1931) Philos Trans R Soc 230:75–101CrossRefGoogle Scholar
  4. 4.
    Astbury WT, Woods HJ (1934) Philos Trans R Soc 232:333–394CrossRefGoogle Scholar
  5. 5.
    Sir Bragg WH (1922) Proc Phys Soc Lond 34:98–103CrossRefGoogle Scholar
  6. 6.
    Bernal JD, Fowler RH (1933) J Chem Phys 1:515–548CrossRefGoogle Scholar
  7. 7.
    Morgan J, Warren BE (1938) J Chem Phys 6:666–673CrossRefGoogle Scholar
  8. 8.
    Hibben JH (1936) J Chem Phys 5:166–172CrossRefGoogle Scholar
  9. 9.
    Walrafen GE (1972) Water: a comprehensive treatise. Plenum, New YorkGoogle Scholar
  10. 10.
    Pauling L (1935) J Am Chem Soc 57:2680–2684CrossRefGoogle Scholar
  11. 11.
    Huggins ML (1936) J Phys Chem 40:723–731CrossRefGoogle Scholar
  12. 12.
    Zewail AH (2006) Annu Rev Phys Chem 57:65–103CrossRefGoogle Scholar
  13. 13.
    Liu K, Brown MG, Carter C, Saykally RJ, Gregory JK, Clary DC (1996) Nature 381:501–503CrossRefGoogle Scholar
  14. 14.
    Liu K, Brown MG, Cruzan JD, Saykally RJ (1997) J Phys Chem A 101:8995–9010CrossRefGoogle Scholar
  15. 15.
    Keutsch FN, Saykally RJ (2001) PNAS 98:10533–10540CrossRefGoogle Scholar
  16. 16.
    Szalewicz K, Leforestier C, van der Avoird A (2009) Chem Phys Lett 482:1–14CrossRefGoogle Scholar
  17. 17.
    Shields RM, Temelso B, Archer KA, Morrell TE, Shields GC (2010) J Phys Chem A 114:11725–11737CrossRefGoogle Scholar
  18. 18.
    Pérez C, Neill JL, Muckle MT, Zaleski DP, Peña I, Lopez JC, Alonso JL, Pate BH (2015) Angew Chem Int Ed 54:979–982CrossRefGoogle Scholar
  19. 19.
    Vallejos MM, Peruchena NM (2012) J Phys Chem A 116:4199–4210CrossRefGoogle Scholar
  20. 20.
    Thomas J, Sukhorukov O, Jäger W, Xu Y (2014) Angew Chem Int Ed 53:1156–1159CrossRefGoogle Scholar
  21. 21.
    Gadre SR, Yeole SD, Sahu N (2014) Chem Rev 114:12132–12173CrossRefGoogle Scholar
  22. 22.
    Cirtog M, Alikhani ME, Madebene B, Soulard P, Asselin P, Tremblay B (2011) J Phys Chem A 115:6688–6701CrossRefGoogle Scholar
  23. 23.
    Esrafili MD, Mohammadian-Sabet F (2015) Struct Chem. doi: 10.1007/s11224-015-0594-8
  24. 24.
    Infantes L, Motherwell S (2002) Cryst. Eng. Comm. 4:454–461CrossRefGoogle Scholar
  25. 25.
    Grabowski SJ (2001) J Phys Chem A 105:10739–10746CrossRefGoogle Scholar
  26. 26.
    Rozas I (2007) Phys Chem Chem Phys 9:2782–2790CrossRefGoogle Scholar
  27. 27.
    Parthasarathi R, Subramania V (2006) Characterization of hydrogen bonding: from van der Waals interactions to covalency. In: Grabowski SJ (ed) Hydrogen bonding: new insights. Springer, The NetherlandsGoogle Scholar
  28. 28.
    Clark T (2013) WIREs Comput Mol Sci 3:13–20CrossRefGoogle Scholar
  29. 29.
    Bader RF (1994) Atoms in molecules: a quantum theory. University Press, Oxford, OxfordGoogle Scholar
  30. 30.
    Bader RF (1998) J Phys Chem A 102:7314–7323CrossRefGoogle Scholar
  31. 31.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  32. 32.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  33. 33.
    Savin A, Silvi B, Colonna F (1996) Can J Chem 74:1088–1096CrossRefGoogle Scholar
  34. 34.
    Fuentealba P, Chamorro E, Santo JC (2006) Understanding and using the electron localization function. In: Toro-Labbé A (ed) Theoretical aspects of chemical reactivity. Elsevier, AmsterdamGoogle Scholar
  35. 35.
    Fuster F, Silvi B (2000) Theor Chem Acc 104:13–21CrossRefGoogle Scholar
  36. 36.
    Alikhani ME, Fuster F, Silvi B (2005) Struct Chem 16:203–210CrossRefGoogle Scholar
  37. 37.
    Silvi B (2003) J Phys Chem A 107:3081–3085CrossRefGoogle Scholar
  38. 38.
    Silvi B, Fourré I, Alikhani ME (2005) Monatsh Chem 136:855–879CrossRefGoogle Scholar
  39. 39.
    Fuster F, Grabowski SJ (2011) J Phys Chem A 115:10078–10086CrossRefGoogle Scholar
  40. 40.
    Dargent D, Zins EL, Madebene B, Alikhani ME (2015) J Mol Model. 21:214_1–214_13CrossRefGoogle Scholar
  41. 41.
    Grabowski SJ (2015) Chem Phys Chem 16:1470–1479Google Scholar
  42. 42.
    Grabowski SJ (2015) Molecules 20:11297–11316CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01Google Scholar
  44. 44.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  45. 45.
    Kendall RA, Dunning TH, Harrison RH (1992) J Chem Phys 96:6796–6808CrossRefGoogle Scholar
  46. 46.
    Keith TA (2014) AIMAll (version 14.10.27), TK Gristmill Software, Overland Park KS, USA ( Scholar
  47. 47.
    Mucha M, Mielke Z (2007) J Phys Chem A 111:2398–2406CrossRefGoogle Scholar
  48. 48.
    Favero LB, Caminati W (2009) J Phys Chem A 113:14308–14311CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. Dargent
    • 1
    • 2
  • E. L. Zins
    • 1
    • 2
  • B. Madebène
    • 1
    • 2
  • M. E. Alikhani
    • 1
    • 2
    Email author
  1. 1.Sorbonne Universités, UPMC Univ. Paris 06, MONARIS, UMR 8233Université Pierre et Marie CurieParisFrance
  2. 2.CNRS, MONARIS, UMR 8233Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations