A gas-phase ab initio study of the hydrolysis of HCN

  • Futing Xia
  • Ping NingEmail author
  • Qiulin Zhang
  • Fenji Li
  • Gaohong Tao
  • Kai Tian
  • Xiangzhong Huang
  • Jinhui Peng
  • Hua Zhu
Regular Article


The catalyzed hydrolysis of HCN has become one of the most promising methods for the purification of HCN emissions. Three types of reaction mechanisms (named path A, B and C) for HCN hydrolysis were considered, and a total of 51 geometries including 20 transition states were optimized using ab initio MP2 methods with the 6-31++G(d,p) basis set. They share the first step of water attack for path A and B. In the following process, the proton of oxygen atom shifts to the nitrogen atom first for path A, while in path B, the proton of carbon atom shifts first. The path C contains the structural tautomer interconversion from HCN to HNC, and it turns out to be the most favorable pathway. Additionally, the water-assisted hydrolysis reaction mechanisms were examined for the three types of reaction processes. The inclusion of the auxiliary water decreases most of the Gibbs free energy barriers, and the formamide is the most stable intermediate on the free energy surface. The Gibbs free energy barrier of w-path A (50.39 kcal/mol) becomes the lowest. It is found that the process with the transfer of H atom from the C atom to the N atom is the rate-controlling step, and the efficient catalyst should activate C–N bond and assist the proton transfer. This information may help in designing new catalysts for this important reaction.


HCN hydrolysis Mechanism MP2 Water assist Proton transfer 



The authors are grateful for the financial support from National Program on Key Basic Research Project of China (973 Program, 2014CB643404), the National Natural Science Foundation of China (21567030, 11447191 and 21307047) and Natural science fund item of Yunnan Province under the Grant Number 2013FD033.


  1. 1.
  2. 2.
    Tian FJ, Yu JL, McKenzie LJ, Hayashi J, Li CZ (2007) Energy Fuel 21:517–521CrossRefGoogle Scholar
  3. 3.
    Rahaman MSA, Ismail AF, Mustafa A (2007) Polym Degrad Stab 92:1421–1432CrossRefGoogle Scholar
  4. 4.
    Baum MM, Moss JA, Pastel SH, Poskrebyshev AGA (2007) Environ Sci Technol 41:857–862CrossRefGoogle Scholar
  5. 5.
    Karlsson HL (2004) Sci Total Environ 334:125–132CrossRefGoogle Scholar
  6. 6.
    Zhao Q, Tian SL, Yan LX, Zhang QL, Ning P (2015) J Hazard Mater 285:250–258CrossRefGoogle Scholar
  7. 7.
    Oliver TM, Jugoslav K, Aleksandar P, Nikola D (2005) Chem Eng Process 44:1181–1187CrossRefGoogle Scholar
  8. 8.
    Ye PW, Luan ZQ, Li K, Yu LQ, Zhang JC (2009) Carbon 47:1799–1805CrossRefGoogle Scholar
  9. 9.
    Kröcher O, Elsener M (2009) Appl Catal B Environ 92:75–89CrossRefGoogle Scholar
  10. 10.
    Giménez-López J, Millera A, Bilbao R, Alzueta MU (2010) Combust Flame 157:267–276CrossRefGoogle Scholar
  11. 11.
    Zhao HB, Tonkyn RG, Barlow SE, Koel BE, Peden CHF (2006) Appl Catal B Environ 65:282–290CrossRefGoogle Scholar
  12. 12.
    Rastegar SF, Peyghan AA, Hadipour NL (2013) Appl Surf Sci 265:412–417CrossRefGoogle Scholar
  13. 13.
    Zhao M, Yang F, Xue Y, Xiao D, Guo Y (2014) J Mol Model 20:2214–2218CrossRefGoogle Scholar
  14. 14.
    Shi LB, Wang YP, Dong HK (2015) Appl Surf Sci 329:330–336CrossRefGoogle Scholar
  15. 15.
    Miyadera T (1998) Appl Catal B Environ 16:155–164CrossRefGoogle Scholar
  16. 16.
    Hu XB, Liang WC, Han SJ (2005) J Phys Chem B 109:5935–5944CrossRefGoogle Scholar
  17. 17.
    Xia FT, Zhu H (2011) J Comput Chem 32:2545–2554CrossRefGoogle Scholar
  18. 18.
    Deng C, Li QG, Ren Y, Wong NB, Chu SY, Zhu HJ (2008) J Comput Chem 29:466–480CrossRefGoogle Scholar
  19. 19.
    Deng C, Wu XP, Sun XM, Ren Y, Sheng YH (2009) J Comput Chem 30:285–294CrossRefGoogle Scholar
  20. 20.
    Zeng Y, Xue Y, Yan GS (2008) J Phys Chem B 112:10659–10667CrossRefGoogle Scholar
  21. 21.
    Gao JY, Zeng Y, Zhang CH, Xue Y (2009) J Phys Chem A 113:325–331CrossRefGoogle Scholar
  22. 22.
    Malaspina T, Fileti EE, Riveros JM, Canuto S (2006) J Phys Chem A 110:10303–10308CrossRefGoogle Scholar
  23. 23.
    Galano A (2007) J Phys Chem A 111:5086–5091CrossRefGoogle Scholar
  24. 24.
    Hu XF, Trenary M (2012) J Phys Chem C 116:4091–4096CrossRefGoogle Scholar
  25. 25.
    Chandra AK, Uchimaru T (2001) J Phys Chem A 105:3578–3582CrossRefGoogle Scholar
  26. 26.
    Gardebien F, Sevin A (2003) J Phys Chem A 107:3925–3934CrossRefGoogle Scholar
  27. 27.
    Frisch MJ et al (2005) Gaussian 03, Version D. 01. Gaussian, Inc., PittsburghGoogle Scholar
  28. 28.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  29. 29.
    Gordon MS (1980) Chem Phys Lett 76:163–168CrossRefGoogle Scholar
  30. 30.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  31. 31.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  32. 32.
    Wiberg KB (1968) Tetrahedron 24:1083–1096CrossRefGoogle Scholar
  33. 33.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO Version 3.1Google Scholar
  34. 34.
    Moyano A, Pericàs MA, Valentí A (1989) J Org Chem 54:573–582CrossRefGoogle Scholar
  35. 35.
    Hu X, Li H, Liang W, Han S (2004) J Phys Chem B 108:12999–13007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Futing Xia
    • 1
    • 2
    • 3
  • Ping Ning
    • 4
    Email author
  • Qiulin Zhang
    • 4
  • Fenji Li
    • 1
    • 2
  • Gaohong Tao
    • 1
    • 2
  • Kai Tian
    • 1
    • 2
  • Xiangzhong Huang
    • 1
    • 2
  • Jinhui Peng
    • 1
    • 2
    • 3
  • Hua Zhu
    • 5
  1. 1.Joint Research Centre for International Cross-Border Ethnic Regions Biomass Clean Utilization in YunnanYunnan Minzu UniversityKunmingChina
  2. 2.Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of YunnanYunnan Minzu UniversityKunmingChina
  3. 3.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunmingChina
  4. 4.Faculty of Environmental Science and EngineeringKunming University of Science and TechnologyKunmingChina
  5. 5.School of ChemistrySichuan UniversityChengduChina

Personalised recommendations